分类算法-线性分类器 LogisticRegression an

作者: 奋斗青春无悔 | 来源:发表于2018-05-10 10:44 被阅读18次

    前言

    此程序基于良/恶性肿瘤预测实验。

    分别用LogisticRegression模型和SGDClassifier模型实现预测任务。

    本程序可以流畅运行于Python3.6环境,但是Python2.x版本需要修正的地方也已经在注释中说明。

    requirements:pandas,numpy,scikit-learn

    想查看其他经典算法实现可以关注查看本人其他文集。

    实验结果分析

    LogisticRegression比起SGDClassifier在测试机上表现有更高的准确性,这是因为Scikit-learn中采用解析的方式精确计算LogisticRegression的参数,而使用梯度法估计SGDClassifier的参数。

    相比之下,前者计算时间长但是模型性能略高;后者采用随机梯度上升算法估计模型参数,计算时间短,但是产出的模型性能略低。一般而言,对于训练数据规模在10万量级以上的数据,考虑到时间的耗用,更适合使用随机梯度算法对模型进行估计。

    程序源码

    import pandas as pd

    import numpy as np

    # features column names

    column_names = ['Sample code number','Clump Thickness','Uniformity of Cell Size' ,'Uniformity of Cell Shape','Marginal Adhesion',

    'Single Epithelial Cell Size','Bare Nuclei','Bland Chromatin','Normal Nucleoli','Mitoses','Class']

    #read data from csv file

    data = pd.read_csv('./breast-cancer-wisconsin.data',names=column_names)

    #Data preprocessing

    #replace all ? with standard missing value

    data = data.replace(to_replace='?',value=np.nan)

    #drop all data rows which have any missing feature

    data=data.dropna(how='any')

    # data.to_csv('./text.csv')# save data to csv file

    #notes:you should use cross_valiation instead of model_valiation in python 2.7

    #from sklearn.cross_validation import train_test_split #DeprecationWarning

    from sklearn.model_selection import train_test_split #use train_test_split module of sklearn.model_valiation to split data

    #take 25 percent of data randomly for testing,and others for training

    X_train,X_test,y_train,y_test = train_test_split(data[column_names[1:10]],data[column_names[10]],test_size=0.25,random_state=33)

    #check the numbers and category distribution of the test samples

    # print(y_train.value_counts())

    # print(y_test.value_counts())

    #import relative package

    from sklearn.preprocessing import StandardScaler

    from sklearn.linear_model import LogisticRegression

    from sklearn.linear_model import SGDClassifier

    #standardizing data in train set and test set

    ss = StandardScaler()

    X_train = ss.fit_transform(X_train)

    X_test = ss.transform(X_test)

    #initializing logisticregression and sgdcclassifier model

    lr=LogisticRegression()

    #notes:the default parameters in python2.7 are max_iter=5 tol=none,you can don't specify the parameters of sgdclassifier

    #sgdc=SGDClassifier() #DeprecationWarning

    sgdc=SGDClassifier(max_iter=5,tol=None)

    #call fit function to trainning arguments ofmodel

    lr.fit(X_train,y_train)

    #save the prediction of test set in variable

    lr_y_predict=lr.predict(X_test)

    sgdc.fit(X_train,y_train)

    sgdc_y_predict=sgdc.predict(X_test)

    #performance analysis

    from sklearn.metrics import classification_report

    #get accuracy by the score function in LR model

    print('Accuracy of LR Classifier:',lr.score(X_test,y_test))

    #get  precision ,recall and f1-score from classification_report module

    print(classification_report(y_test,lr_y_predict,target_names=['Benign','Malignant']))

    #get accuracy by the score function in SGD classifier

    print('Accuracy of SGD Classifier:',sgdc.score(X_test,y_test))

    #get  precision ,recall and f1-score from classification_report module

    print(classification_report(y_test,sgdc_y_predict,target_names=['Benign','Malignant']))

    Ubuntu16.04 Python3.6 程序输出结果:

    Accuracy of LR Classifier: 0.9883040935672515

                precision    recall  f1-score  support

        Benign      0.99      0.99      0.99      100

      Malignant      0.99      0.99      0.99        71

    avg / total      0.99      0.99      0.99      171

    Accuracy of SGD Classifier: 0.9824561403508771

                precision    recall  f1-score  support

        Benign      1.00      0.97      0.98      100

      Malignant      0.96      1.00      0.98        71

    avg / total      0.98      0.98      0.98      171

    数据下载地址

    欢迎指正错误,包括英语和程序错误。有问题也欢迎提问,一起加油一起进步。

    本程序完全是本人逐字符输入的劳动结果,转载请注明出处。

    相关文章

      网友评论

        本文标题:分类算法-线性分类器 LogisticRegression an

        本文链接:https://www.haomeiwen.com/subject/qtczrftx.html