朴素贝叶斯-R

作者: 灵妍 | 来源:发表于2018-03-17 09:09 被阅读1次

    R中有一类数据类型叫Categorical Varieble,我们用factor来存储它
    CTRL+L用来清除控制区域,小扫帚用来清除已生成变量
    代码:

    # Naive Bayes
    
    # Importing the dataset
    dataset = read.csv('Social_Network_Ads.csv')
    dataset = dataset[3:5]
    
    # Encoding the target feature as factor
    dataset$Purchased = factor(dataset$Purchased, levels = c(0,1))
    
    # Splitting the dataset into the Training set and Test set
    # install.packages('caTools')
    library(caTools)
    set.seed(123)
    split = sample.split(dataset$Purchased, SplitRatio = 0.75)
    training_set = subset(dataset, split == TRUE)
    test_set = subset(dataset, split == FALSE)
    
    # Feature Scaling
    training_set[-3] = scale(training_set[-3])
    test_set[-3] = scale(test_set[-3])
    
    # Fitting Naive Bayes to the Training set
    # install.packages('e1071')
    library(e1071)
    classifier = naiveBayes(x = training_set[-3],
                            y = training_set$Purchased)
    
    # Predicting the Test set results
    y_pred = predict(classifier, newdata = test_set[-3])
    
    # Making the Confusion Matrix
    cm = table(test_set[, 3], y_pred)
    
    # Visualising the Training set results
    library(ElemStatLearn)
    set = training_set
    X1 = seq(min(set[, 1]) - 1, max(set[, 1]) + 1, by = 0.0075)
    X2 = seq(min(set[, 2]) - 1, max(set[, 2]) + 1, by = 0.0075)
    grid_set = expand.grid(X1, X2)
    colnames(grid_set) = c('Age', 'EstimatedSalary')
    y_grid = predict(classifier, newdata = grid_set)
    plot(set[, -3],
         main = 'Naive Bayes (Training set)',
         xlab = 'Age', ylab = 'Estimated Salary',
         xlim = range(X1), ylim = range(X2))
    contour(X1, X2, matrix(as.numeric(y_grid), length(X1), length(X2)), add = TRUE)
    points(grid_set, pch = '.', col = ifelse(y_grid == 1, 'springgreen3', 'tomato'))
    points(set, pch = 21, bg = ifelse(set[, 3] == 1, 'green4', 'red3'))
    
    # Visualising the Test set results
    library(ElemStatLearn)
    set = test_set
    X1 = seq(min(set[, 1]) - 1, max(set[, 1]) + 1, by = 0.0075)
    X2 = seq(min(set[, 2]) - 1, max(set[, 2]) + 1, by = 0.0075)
    grid_set = expand.grid(X1, X2)
    colnames(grid_set) = c('Age', 'EstimatedSalary')
    y_grid = predict(classifier, newdata = grid_set)
    plot(set[, -3], main = 'Naive Bayes (Test set)',
         xlab = 'Age', ylab = 'Estimated Salary',
         xlim = range(X1), ylim = range(X2))
    contour(X1, X2, matrix(as.numeric(y_grid), length(X1), length(X2)), add = TRUE)
    points(grid_set, pch = '.', col = ifelse(y_grid == 1, 'springgreen3', 'tomato'))
    points(set, pch = 21, bg = ifelse(set[, 3] == 1, 'green4', 'red3'))
    

    关键代码:

    Encoding the target feature as factor

    dataset$Purchased = factor(dataset$Purchased, levels = c(0,1))
    没有这部分代码,就无法显示预测结果,我们要将数值转换成因子,也就是分类变量,否则在显示预测结果时就会出现factor(0),在显示混淆矩阵时,就会出现数值大小不一致,因为一个是数字,一个是分类变量为空。这里的第二行代码表示分类变量有两个取值,0和1,它们此时代表的是因子,而不是数值
    library(e1071)
    classifier = naiveBayes(x = training_set[-3],
    y = training_set$Purchased)
    运行结果:

    混淆矩阵.PNG 训练集.PNG 测试集.PNG

    朴素贝叶斯要求特征点是独立的

    相关文章

      网友评论

        本文标题:朴素贝叶斯-R

        本文链接:https://www.haomeiwen.com/subject/qyolqftx.html