同步公众号(arXiv每日论文速递),回复'search 关键词'查询相关最新论文。
[检测分类相关]:
【1】 Fingerprint Presentation Attack Detection Based on Local Features Encoding for Unknown Attacks
作者: Lázaro J. González-Soler, Christoph Busch
链接:https://arxiv.org/abs/1908.10163
【2】 Dual Directed Capsule Network for Very Low Resolution Image Recognition
作者: Maneet Singh, Mayank Vatsa
备注:Accepted in the International Conference on Computer Vision (ICCV) 2019
链接:https://arxiv.org/abs/1908.10027
【3】 Unsupervised Deep Feature Transfer for Low Resolution Image Classification
作者: Yuanwei Wu, Guanghui Wang
备注:4 pages, accepted to ICCV19 Workshop and Challenge on Real-World Recognition from Low-Quality Images and Videos
链接:https://arxiv.org/abs/1908.10012
【4】 Curved Text Detection in Natural Scene Images with Semi- and Weakly-Supervised Learning
作者: Xugong Qin, Weiping Wang
备注:Accepted by ICDAR 2019
链接:https://arxiv.org/abs/1908.09990
【5】 Key Protected Classification for Collaborative Learning
作者: Mert Bülent Sarıyıldız, Erman Ayday
备注:\c{opyright} 2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 license this http URL
链接:https://arxiv.org/abs/1908.10172
【6】 Deep Learning-Based Strategy for Macromolecules Classification with Imbalanced Data from Cellular Electron Cryotomography
作者: Ziqian Luo, Min Xu
链接:https://arxiv.org/abs/1908.09993
[分割/语义相关]:
【1】 Segmentation Mask Guided End-to-End Person Search
作者: Dingyuan Zheng, Yao Zhao
链接:https://arxiv.org/abs/1908.10179
【2】 A Weakly Supervised Method for Instance Segmentation of Biological Cells
作者: Fidel A. Guerrero-Peña, Alexandre Cunha
备注:Accepted at MICCAI Worshop 2019
链接:https://arxiv.org/abs/1908.09891
【3】 Global Planar Convolutions for improved context aggregation in Brain Tumor Segmentation
作者: Santi Puch, Vesna Prchkovska
备注:Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. BrainLes 2018
链接:https://arxiv.org/abs/1908.10281
【4】 A hybrid deep learning framework for integrated segmentation and registration: evaluation on longitudinal white matter tract changes
作者: Bo Li, Esther Bron
备注:MICCAI 2019 (oral presentation)
链接:https://arxiv.org/abs/1908.10221
【5】 Reproducible White Matter Tract Segmentation Using 3D U-Net on a Large-scale DTI Dataset
作者: Bo Li, Esther Bron
备注:Machine Learning in Medical Imaging (MLMI), 2018
链接:https://arxiv.org/abs/1908.10219
[GAN/对抗式/生成式相关]:
【1】 End-to-End Conditional GAN-based Architectures for Image Colourisation
作者: Marc Górriz, Noel E. O'Connor
备注:IEEE 21st International Workshop on Multimedia Signal Processing, 27-29 Sept 2019, Kuala Lumpur, Malaysia
链接:https://arxiv.org/abs/1908.09873
[图像/视频检索]:
【1】 Fashion Image Retrieval with Capsule Networks
作者: Furkan Kınlı, Furkan Kıraç
备注:Accepted to the International Conference on Computer Vision, ICCV 2019, Workshop on Computer Vision for Fashion, Art and Design
链接:https://arxiv.org/abs/1908.09943
[行为/时空/光流/姿态/运动]:
【1】 Bottom-up Higher-Resolution Networks for Multi-Person Pose Estimation
作者: Bowen Cheng, Lei Zhang
链接:https://arxiv.org/abs/1908.10357
【2】 Mobile Video Action Recognition
作者: Yuqi Huo, Ji-Rong Wen
链接:https://arxiv.org/abs/1908.10155
【3】 Temporal Reasoning Graph for Activity Recognition
作者: Jingran Zhang, Heng Tao Shen
链接:https://arxiv.org/abs/1908.09995
[半/弱/无监督相关]:
【1】 Unsupervised Domain-Adaptive Person Re-identification Based on Attributes
作者: Xiangping Zhu, Vittorio Murino
备注:5 pages, accepted by ICIP2019
链接:https://arxiv.org/abs/1908.10359
【2】 Attention-based Dropout Layer for Weakly Supervised Object Localization
作者: Junsuk Choe, Hyunjung Shim
备注:CVPR 2019 (Oral)
链接:https://arxiv.org/abs/1908.10028
[跟踪相关]:
【1】 Learning Reinforced Attentional Representation for End-to-End Visual Tracking
作者: Peng Gao, Fei Wang
链接:https://arxiv.org/abs/1908.10009
[迁移学习/domain/主动学习/自适应]:
【1】 MetaMixUp: Learning Adaptive Interpolation Policy of MixUp with Meta-Learning
作者: Zhijun Mai, Heng Tao Shen
链接:https://arxiv.org/abs/1908.10059
[Re-id相关]:
【1】 Intra-Camera Supervised Person Re-Identification: A New Benchmark
作者: Xiangping Zhu, Shaogang Gong
备注:9 pages, 3 figures, accepted by ICCV Workshop on Real-World Recognition from Low-Quality Images and Videos, 2019
链接:https://arxiv.org/abs/1908.10344
【2】 Global-Local Temporal Representations For Video Person Re-Identification
作者: Jianing Li, Shiliang Zhang
链接:https://arxiv.org/abs/1908.10049
[视频理解VQA/caption等]:
【1】 Controllable Video Captioning with POS Sequence Guidance Based on Gated Fusion Network
作者: Bairui Wang, Wei Liu
备注:Accepted by ICCV 2019
链接:https://arxiv.org/abs/1908.10072
[数据集dataset]:
【1】 Large-Scale Historical Watermark Recognition: dataset and a new consistency-based approach
作者: Xi Shen, Mathieu Aubry
链接:https://arxiv.org/abs/1908.10254
[点云]:
【1】 LiDARTag: A Real-Time Fiducial Tag using Point Clouds
作者: Jiunn-Kai Huang, Jessy W. Grizzle
链接:https://arxiv.org/abs/1908.10349
[深度depth相关]:
【1】 A2J: Anchor-to-Joint Regression Network for 3D Articulated Pose Estimation from a Single Depth Image
作者: Fu Xiong, Junsong Yuan
备注:Accepted by ICCV2019
链接:https://arxiv.org/abs/1908.09999
[3D/3D重建等相关]:
【1】 HRGE-Net: Hierarchical Relational Graph Embedding Network for Multi-view 3D Shape Recognition
作者: Xin Wei, Jian Sun
链接:https://arxiv.org/abs/1908.10098
【2】 3D Convolutional Neural Networks Image Registration Based on Efficient Supervised Learning from Artificial Deformations
作者: Hessam Sokooti, Marius Staring
链接:https://arxiv.org/abs/1908.10235
[其他]:
【1】 Physics-Based Rendering for Improving Robustness to Rain
作者: Shirsendu Sukanta Halder, Raoul de Charette
备注:ICCV 2019. Supplementary pdf / videos available on project page
链接:https://arxiv.org/abs/1908.10335
【2】 Few-shot Learning with Deep Triplet Networks for Brain Imaging Modality Recognition
作者: Santi Puch, Matt Rowe
备注:Medical Image Learning with Less Labels and Imperfect Data, MICCAI 2019 workshop
链接:https://arxiv.org/abs/1908.10266
【3】 Large Scale Landmark Recognition via Deep Metric Learning
作者: Andrei Boiarov, Eduard Tyantov
备注:Accepted at CIKM 2019
链接:https://arxiv.org/abs/1908.10192
【4】 Cooperative Cross-Stream Network for Discriminative Action Representation
作者: Jingran Zhang, Heng Tao Shen
链接:https://arxiv.org/abs/1908.10136
【5】 Synthetic patches, real images: screening for centrosome aberrations in EM images of human cancer cells
作者: Artem Lukoyanov, Anna Kreshuk
备注:Accepted at MICCAI 2019
链接:https://arxiv.org/abs/1908.10109
【6】 Distorted Representation Space Characterization Through Backpropagated Gradients
作者: Gukyeong Kwon, Ghassan AlRegib
备注:5 pages, 5 figures, 2 tables, ICIP 2019
链接:https://arxiv.org/abs/1908.09998
【7】 PixelVAE++: Improved PixelVAE with Discrete Prior
作者: Hossein Sadeghi, Mohammad H. Amin
链接:https://arxiv.org/abs/1908.09948
【8】 Index Network
作者: Hao Lu, Songcen Xu
备注:Extended version of "Indices Matter: Learning to Index for Deep Image Matting" at arXiv:1908.00672
链接:https://arxiv.org/abs/1908.09895
【9】 Learning to Discover Novel Visual Categories via Deep Transfer Clustering
作者: Kai Han, Andrew Zisserman
备注:ICCV 2019
链接:https://arxiv.org/abs/1908.09884
【10】 Physiological and Affective Computing through Thermal Imaging: A Survey
作者: Youngjun Cho, Nadia Bianchi-Berthouze
链接:https://arxiv.org/abs/1908.10307
【11】 Is the Red Square Big? MALeViC: Modeling Adjectives Leveraging Visual Contexts
作者: Sandro Pezzelle, Raquel Fernández
备注:Accepted at EMNLP-IJCNLP 2019
链接:https://arxiv.org/abs/1908.10285
【12】 DRD-Net: Detail-recovery Image Deraining via Context Aggregation Networks
作者: Sen Deng, Meng Wang
链接:https://arxiv.org/abs/1908.10267
【13】 Enabling Hyper-Personalisation: Automated Ad Creative Generation and Ranking for Fashion e-Commerce
作者: Sreekanth Vempati, Sandeep R
备注:Workshop on Recommender Systems in Fashion, 13th ACM Conference on Recommender Systems, 2019
链接:https://arxiv.org/abs/1908.10139
【14】 No Peeking through My Windows: Conserving Privacy in Personal Drones
作者: Alem Fitwi, Sencun Zhu
备注:To be presented at The Fifth IEEE Annual International Smart Cities Conference (ISC2 2019), Casablanca, Morocco, October 2019
链接:https://arxiv.org/abs/1908.09935
【15】 Long Range Neural Navigation Policies for the Real World
作者: Ayzaan Wahid, Tsang-Wei Edward Lee
链接:https://arxiv.org/abs/1903.09870
机器翻译,仅供参考
网友评论