同步公众号(arXiv每日论文速递),回复'search 关键词'查询相关最新论文。
cs.LG 方向,今日共计72篇
【1】 Causally interpretable multi-step time series forecasting: A new machine learning approach using simulated differential equations
标题:因果可解释的多步时间序列预测:一种新的利用模拟微分方程的机器学习方法
作者: William Schoenberg
链接:https://arxiv.org/abs/1908.10336
【2】 Early Classification for Agricultural Monitoring from Satellite Time Series
标题:基于卫星时间序列的农业监测早期分类
作者: Marc Rußwurm, Marco Körner
备注:Appeared at the International Conference on Machine Learning AI for Social Good Workshop, Long Beach, United States, 2019
链接:https://arxiv.org/abs/1908.10283
【3】 Learning Algebraic Models of Quantum Entanglement
标题:量子纠缠的学习代数模型
作者: Hamza Jaffali, Luke Oeding
链接:https://arxiv.org/abs/1908.10247
【4】 Multi-Task Gaussian Processes and Dilated Convolutional Networks for Reconstruction of Reproductive Hormonal Dynamics
标题:用于生殖激素动力学重建的多任务高斯过程和扩张卷积网络
作者: Iñigo Urteaga, Noémie Elhadad
备注:Accepted and presented in Machine Learning for Healthcare 2019
链接:https://arxiv.org/abs/1908.10226
【5】 Learning Continually from Low-shot Data Stream
标题:从低速数据流中不断学习
作者: Canyu Le, Lei Zhang
链接:https://arxiv.org/abs/1908.10223
【6】 Urban flows prediction from spatial-temporal data using machine learning: A survey
标题:利用机器学习从时空数据预测城市流量:一项调查
作者: Peng Xie, Junbo Zhang
链接:https://arxiv.org/abs/1908.10218
【7】 Blended Convolution and Synthesis for Efficient Discrimination of 3D Shapes
标题:用于三维形状识别的混合卷积和合成
作者: Sameera Ramasinghe, Stephen Gould
链接:https://arxiv.org/abs/1908.10209
【8】 The many faces of deep learning
标题:深度学习的许多面孔
作者: Raul Vicente
备注:18 pages
链接:https://arxiv.org/abs/1908.10206
【9】 A Machine Learning Approach for Smartphone-based Sensing of Roads and Driving Style
标题:一种基于智能手机的道路和驾驶风格感知的机器学习方法
作者: M. Ricardo Carlos
链接:https://arxiv.org/abs/1908.10187
【10】 Matrix embedding method in match for session-based recommendation
标题:基于会话的推荐匹配中的矩阵嵌入方法
作者: Qizhi Zhang, Anxiang Zeng
链接:https://arxiv.org/abs/1908.10180
【11】 Key Protected Classification for Collaborative Learning
标题:协作学习的关键保护分类
作者: Mert Bülent Sarıyıldız, Erman Ayday
备注:\c{opyright} 2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 license this http URL
链接:https://arxiv.org/abs/1908.10172
【12】 Incremental Improvement of a Question Answering System by Re-ranking Answer Candidates using Machine Learning
标题:通过使用机器学习重新排序答案候选者对问答系统进行增量改进
作者: Michael Barz, Daniel Sonntag
备注:Accepted for oral presentation at tenth International Workshop on Spoken Dialogue Systems Technology (IWSDS) 2019
链接:https://arxiv.org/abs/1908.10149
【13】 Automatic Detection of ECG Abnormalities by using an Ensemble of Deep Residual Networks with Attention
标题:利用带注意的深层残差网络集合自动检测ECG异常
作者: Yang Liu, Henggui Zhang
链接:https://arxiv.org/abs/1908.10088
【14】 Finite size corrections for neural network Gaussian processes
标题:神经网络高斯过程的有限尺寸修正
作者: Joseph M. Antognini
备注:Presented at the 2019 ICML Workshop on Theoretical Physics for Deep Learning
链接:https://arxiv.org/abs/1908.10030
【15】 Real-world Conversational AI for Hotel Bookings
标题:酒店预订的现实世界对话人工智能
作者: Bai Li, Hussein Fazal
备注:Accepted to IEEE AI4I 2019 (International Conference on Artificial Intelligence for Industries)
链接:https://arxiv.org/abs/1908.10001
【16】 Automated Fashion Size Normalization
标题:服装尺寸自动归一化
作者: Eddie S.J. Du, David H. Wayne
链接:https://arxiv.org/abs/1908.09980
【17】 DeepHoyer: Learning Sparser Neural Network with Differentiable Scale-Invariant Sparsity Measures
标题:DeepHoyer:具有可微尺度不变稀疏测度的学习稀疏神经网络
作者: Huanrui Yang, Hai Li
链接:https://arxiv.org/abs/1908.09979
【18】 Private Stochastic Convex Optimization with Optimal Rates
标题:具有最优率的私有随机凸优化
作者: Raef Bassily, Abhradeep Thakurta
链接:https://arxiv.org/abs/1908.09970
【19】 Theory and Evaluation Metrics for Learning Disentangled Representations
标题:学习解缠表示的理论和评价指标
作者: Kien Do, Truyen Tran
链接:https://arxiv.org/abs/1908.09961
【20】 An empirical comparison between stochastic and deterministic centroid initialisation for K-Means variations
标题:K均值变化的随机质心初始化和确定性质心初始化的经验比较
作者: Avgoustinos Vouros (1), (2) Numerical Algorithms Group (NAG))
链接:https://arxiv.org/abs/1908.09946
【21】 On the Bounds of Function Approximations
标题:关于函数逼近的界
作者: Adrian de Wynter
备注:Accepted as a full paper at ICANN 2019. The final, authenticated publication will be available at this https URL
链接:https://arxiv.org/abs/1908.09942
【22】 Stochastic Optimization for Non-convex Inf-Projection Problems
标题:非凸inf投影问题的随机优化
作者: Yan Yan, Tianbao Yang
链接:https://arxiv.org/abs/1908.09941
【23】 Leveraging External Knowledge for Out-Of-Vocabulary Entity Labeling
标题:利用外部知识进行词汇外实体标注
作者: Adrian de Wynter, Lambert Mathias
链接:https://arxiv.org/abs/1908.09936
【24】 Multi-stage Deep Classifier Cascades for Open World Recognition
标题:用于开放世界识别的多级深度分类器级联
作者: Xiaojie Guo, Liang Zhao
备注:This paper has been accepted by CIKM 2019
链接:https://arxiv.org/abs/1908.09931
【25】 Complementary-Similarity Learning using Quadruplet Network
标题:基于四元组网络的互补相似学习
作者: Mansi Ranjit Mane, Kannan Achan
链接:https://arxiv.org/abs/1908.09928
【26】 SynGAN: Towards Generating Synthetic Network Attacks using GANs
标题:SynGAN:利用GANS生成合成网络攻击
作者: Jeremy Charlier, Henning Schulzrinne
链接:https://arxiv.org/abs/1908.09899
【27】 Privacy-Preserving Tensor Factorization for Collaborative Health Data Analysis
标题:协同健康数据分析中隐私保护的张量分解
作者: Jing Ma, Xiaoqian Jiang
链接:https://arxiv.org/abs/1908.09888
【28】 Dimension independent bounds for general shallow networks
标题:一般浅网络的维数无关界
作者: Hrushikesh N. Mhaskar
链接:https://arxiv.org/abs/1908.09880
【29】 Bottom-up Higher-Resolution Networks for Multi-Person Pose Estimation
标题:用于多人姿态估计的自底向上高分辨率网络
作者: Bowen Cheng, Lei Zhang
链接:https://arxiv.org/abs/1908.10357
【30】 LiDARTag: A Real-Time Fiducial Tag using Point Clouds
标题:LiDARTag:一种使用点云的实时基准标签
作者: Jiunn-Kai Huang, Jessy W. Grizzle
链接:https://arxiv.org/abs/1908.10349
【31】 A novel active learning-based Gaussian process metamodelling strategy for estimating the full probability distribution in forward UQ analysis
标题:一种新的基于主动学习的高斯过程元建模策略用于估计正向UQ分析中的全概率分布
作者: Ziqi Wang, Marco Broccardo
链接:https://arxiv.org/abs/1908.10341
【32】 Physics-Based Rendering for Improving Robustness to Rain
标题:基于物理的绘制提高对雨的鲁棒性
作者: Shirsendu Sukanta Halder, Raoul de Charette
备注:ICCV 2019. Supplementary pdf / videos available on project page
链接:https://arxiv.org/abs/1908.10335
【33】 Deep Reinforcement Learning for Chatbots Using Clustered Actions and Human-Likeness Rewards
标题:利用集群动作和类人奖励的聊天机器人深度强化学习
作者: Heriberto Cuayáhuitl, Jihie Kim
备注:In International Joint Conference of Neural Networks (IJCNN), 2019
链接:https://arxiv.org/abs/1908.10331
【34】 On the Minimax Optimality of Estimating the Wasserstein Metric
标题:Wasserstein度量估计的Minimax最优性
作者: Tengyuan Liang
链接:https://arxiv.org/abs/1908.10324
【35】 Bridging the Gap for Tokenizer-Free Language Models
标题:为无令牌器语言模型架起桥梁
作者: Dokook Choe, Noah Constant
链接:https://arxiv.org/abs/1908.10322
【36】 Physics Informed Data Driven model for Flood Prediction: Application of Deep Learning in prediction of urban flood development
标题:洪水预测的物理信息数据驱动模型:深度学习在城市洪水发展预测中的应用
作者: Kun Qian, Christian Claudel
链接:https://arxiv.org/abs/1908.10312
【37】 A Framework for Model Search Across Multiple Machine Learning Implementations
标题:一种跨多个机器学习实现的模型搜索框架
作者: Yoshiki Takahashi, Kazuyuki Shudo
备注:Proc. 15h Int'l eScience Conference (eScience 2019), September 2019
链接:https://arxiv.org/abs/1908.10310
【38】 On the Risk of Minimum-Norm Interpolants and Restricted Lower Isometry of Kernels
标题:关于最小范数插值的风险和核的限制下等距
作者: Tengyuan Liang, Xiyu Zhai
链接:https://arxiv.org/abs/1908.10292
【39】 A Deep Reinforcement Learning Approach to Multi-component Job Scheduling in Edge Computing
标题:边缘计算中多部件作业调度的深度强化学习方法
作者: Zhi Cao, Benyuan Liu
链接:https://arxiv.org/abs/1908.10290
【40】 Statistical and Computational Trade-Offs in Kernel K-Means
标题:核K-均值中的统计和计算权衡
作者: Daniele Calandriello, Lorenzo Rosasco
链接:https://arxiv.org/abs/1908.10284
【41】 TEST: an End-to-End Network Traffic Examination and Identification Framework Based on Spatio-Temporal Features Extraction
标题:TEST:一种基于时空特征提取的端到端网络流量检测与识别框架
作者: Yi Zeng, Han Qiu
链接:https://arxiv.org/abs/1908.10271
【42】 Model Selection With Graphical Neighbour Information
标题:具有图形化邻域信息的模型选择
作者: Robert O'Shea
链接:https://arxiv.org/abs/1908.10243
【43】 3D Convolutional Neural Networks Image Registration Based on Efficient Supervised Learning from Artificial Deformations
标题:基于人工变形有效监督学习的三维卷积神经网络图像配准
作者: Hessam Sokooti, Marius Staring
链接:https://arxiv.org/abs/1908.10235
【44】 A hybrid deep learning framework for integrated segmentation and registration: evaluation on longitudinal white matter tract changes
标题:一种用于集成分割和配准的混合深度学习框架:评估纵向白质束变化
作者: Bo Li, Esther Bron
备注:MICCAI 2019 (oral presentation)
链接:https://arxiv.org/abs/1908.10221
【45】 Reproducible White Matter Tract Segmentation Using 3D U-Net on a Large-scale DTI Dataset
标题:在大规模DTI数据集上使用3DU-Net的可重复性白质束分割
作者: Bo Li, Esther Bron
备注:Machine Learning in Medical Imaging (MLMI), 2018
链接:https://arxiv.org/abs/1908.10219
【46】 Cross-modality Knowledge Transfer for Prostate Segmentation from CT Scans
标题:用于CT扫描前列腺分割的跨模态知识转移
作者: Yucheng Liu, Sachin Jambawalikar
备注:9 pages, 3 figures, 2019 MICCAI-DART workshop
链接:https://arxiv.org/abs/1908.10208
【47】 Robust Tensor Recovery with Fiber Outliers for Traffic Events
标题:基于光纤异常值的交通事件鲁棒张量恢复
作者: Yue Hu, Dan Work
链接:https://arxiv.org/abs/1908.10198
【48】 Large Scale Landmark Recognition via Deep Metric Learning
标题:基于深度度量学习的大规模地标识别
作者: Andrei Boiarov, Eduard Tyantov
备注:Accepted at CIKM 2019
链接:https://arxiv.org/abs/1908.10192
【49】 SAERMA: Stacked Autoencoder Rule Mining Algorithm for the Interpretation of Epistatic Interactions in GWAS for Extreme Obesity
标题:SAERMA:用于解释GWAS中极端肥胖的上位性相互作用的堆叠自动编码器规则挖掘算法
作者: Casimiro Aday Curbelo Montañez, Francesco Falciani
链接:https://arxiv.org/abs/1908.10166
【50】 A hybrid parametric-deep learning approach for sound event localization and detection
标题:一种用于声音事件定位和检测的混合参数深度学习方法
作者: Andres Perez-Lopez, Xavier Serra
备注:5 pages, 5 figures, submitted to DCASE2019 Workshop
链接:https://arxiv.org/abs/1908.10133
【51】 Learning-Based Video Game Development in MLP@UoM: An Overview
标题:基于学习的MLP@UOM视频游戏开发综述
作者: Ke Chen
备注:8 pages, 15 figures Invited paper presented as a keynote speech, ICEEIE'19 in Bali, Indonesia
链接:https://arxiv.org/abs/1908.10127
【52】 Proactive Intention Recognition for Joint Human-Robot Search and Rescue Missions through Monte-Carlo Planning in POMDP Environments
标题:POMDP环境下基于蒙特卡罗规划的人-机器人联合搜索救援任务的主动意图识别
作者: Dimitri Ognibene, Letizia Marchegiani
链接:https://arxiv.org/abs/1908.10125
【53】 Multi-Layer Softmaxing during Training Neural Machine Translation for Flexible Decoding with Fewer Layers
标题:多层Softmaxing训练神经机器翻译用于少层灵活解码
作者: Raj Dabre, Atsushi Fujita
链接:https://arxiv.org/abs/1908.10118
【54】 VAE-based Domain Adaptation for Speaker Verification
标题:基于VAE的说话人验证领域适配
作者: Xueyi Wang, Dong Wang
链接:https://arxiv.org/abs/1908.10092
【55】 FinBERT: Financial Sentiment Analysis with Pre-trained Language Models
标题:FinBERT:使用预先训练的语言模型进行金融情绪分析
作者: Dogu Araci
备注:This thesis is submitted in partial fulfillment for the degree of Master of Science in Information Studies: Data Science, University of Amsterdam. June 25, 2019
链接:https://arxiv.org/abs/1908.10063
【56】 Tiny but Accurate: A Pruned, Quantized and Optimized Memristor Crossbar Framework for Ultra Efficient DNN Implementation
标题:微小但精确:用于超高效DNN实现的修剪、量化和优化的记忆电阻交叉开关框架
作者: Xiaolong Ma, Yanzhi Wang
链接:https://arxiv.org/abs/1908.10017
【57】 Unsupervised Deep Feature Transfer for Low Resolution Image Classification
标题:用于低分辨率图像分类的无监督深度特征转移
作者: Yuanwei Wu, Guanghui Wang
备注:4 pages, accepted to ICCV19 Workshop and Challenge on Real-World Recognition from Low-Quality Images and Videos
链接:https://arxiv.org/abs/1908.10012
【58】 Research on Autonomous Maneuvering Decision of UCAV based on Approximate Dynamic Programming
标题:基于近似动态规划的UCAV自主机动决策研究
作者: Zhencai Hu, Fei Wang
链接:https://arxiv.org/abs/1908.10010
【59】 Learning Reinforced Attentional Representation for End-to-End Visual Tracking
标题:用于端到端视觉跟踪的学习增强注意表示
作者: Peng Gao, Fei Wang
链接:https://arxiv.org/abs/1908.10009
【60】 Deep Learning-Based Strategy for Macromolecules Classification with Imbalanced Data from Cellular Electron Cryotomography
标题:基于深度学习的细胞电子冷断层扫描不平衡数据大分子分类策略
作者: Ziqian Luo, Min Xu
链接:https://arxiv.org/abs/1908.09993
【61】 Locally Optimized Random Forests
标题:局部优化随机森林
作者: Tim Coleman, Lucas Mentch
链接:https://arxiv.org/abs/1908.09967
【62】 PixelVAE++: Improved PixelVAE with Discrete Prior
标题:PixelVAE+:具有离散优先级的改进PixelVAE
作者: Hossein Sadeghi, Mohammad H. Amin
链接:https://arxiv.org/abs/1908.09948
【63】 Fashion Image Retrieval with Capsule Networks
标题:基于胶囊网络的服装图像检索
作者: Furkan Kınlı, Furkan Kıraç
备注:Accepted to the International Conference on Computer Vision, ICCV 2019, Workshop on Computer Vision for Fashion, Art and Design
链接:https://arxiv.org/abs/1908.09943
【64】 Gender Prediction from Tweets: Improving Neural Representations with Hand-Crafted Features
标题:来自推文的性别预测:用手工制作的特征改进神经表征
作者: Erhan Sezerer, Selma Tekir
链接:https://arxiv.org/abs/1908.09919
【65】 Convex Programming for Estimation in Nonlinear Recurrent Models
标题:非线性递归模型估计的凸规划
作者: Sohail Bahmani, Justin Romberg
备注:18 pages
链接:https://arxiv.org/abs/1908.09915
【66】 A Weakly Supervised Method for Instance Segmentation of Biological Cells
标题:一种弱监督的生物细胞分割方法
作者: Fidel A. Guerrero-Peña, Alexandre Cunha
备注:Accepted at MICCAI Worshop 2019
链接:https://arxiv.org/abs/1908.09891
【67】 Multi-Granularity Representations of Dialog
标题:对话框的多粒度表示
作者: Shikib Mehri, Maxine Eskenazi
备注:Accepted as a long paper at EMNLP 2019
链接:https://arxiv.org/abs/1908.09890
【68】 BULNER: BUg Localization with word embeddings and NEtwork Regularization
标题:Bulner:使用Word嵌入和网络规则化的Bug本地化
作者: Jacson Rodrigues Barbosa, Marcio E. Delamaro
备注:VII Workshop on Software Visualization, Evolution and Maintenance (VEM '19)
链接:https://arxiv.org/abs/1908.09876
【69】 Sufficient Representations for Categorical Variables
标题:范畴变量的充分表示
作者: Jonathan Johannemann, Stefan Wager
链接:https://arxiv.org/abs/1908.09874
【70】 End-to-End Conditional GAN-based Architectures for Image Colourisation
标题:用于图像着色的端到端条件GaN基结构
作者: Marc Górriz, Noel E. O'Connor
备注:IEEE 21st International Workshop on Multimedia Signal Processing, 27-29 Sept 2019, Kuala Lumpur, Malaysia
链接:https://arxiv.org/abs/1908.09873
【71】 Machine learning algorithms to infer trait matching and predict species interactions in ecological networks
标题:用于推断特征匹配和预测生态网络中物种相互作用的机器学习算法
作者: Maximilian Pichler, Florian Hartig
链接:https://arxiv.org/abs/1908.09853
【72】 Architecture Search by Estimation of Network Structure Distributions
标题:基于网络结构分布估计的体系结构搜索
作者: Anton Muravev, Moncef Gabbouj
链接:https://arxiv.org/abs/1908.06886
机器翻译,仅供参考
网友评论