美文网首页arXiv daily
机器学习每日论文速递[08.28]

机器学习每日论文速递[08.28]

作者: arXiv每日论文速递 | 来源:发表于2019-08-28 17:56 被阅读0次

    同步公众号(arXiv每日论文速递),回复'search 关键词'查询相关最新论文。

    cs.LG 方向,今日共计72篇

    【1】 Causally interpretable multi-step time series forecasting: A new machine learning approach using simulated differential equations
    标题:因果可解释的多步时间序列预测:一种新的利用模拟微分方程的机器学习方法
    作者: William Schoenberg
    链接:https://arxiv.org/abs/1908.10336

    【2】 Early Classification for Agricultural Monitoring from Satellite Time Series
    标题:基于卫星时间序列的农业监测早期分类
    作者: Marc Rußwurm, Marco Körner
    备注:Appeared at the International Conference on Machine Learning AI for Social Good Workshop, Long Beach, United States, 2019
    链接:https://arxiv.org/abs/1908.10283

    【3】 Learning Algebraic Models of Quantum Entanglement
    标题:量子纠缠的学习代数模型
    作者: Hamza Jaffali, Luke Oeding
    链接:https://arxiv.org/abs/1908.10247

    【4】 Multi-Task Gaussian Processes and Dilated Convolutional Networks for Reconstruction of Reproductive Hormonal Dynamics
    标题:用于生殖激素动力学重建的多任务高斯过程和扩张卷积网络
    作者: Iñigo Urteaga, Noémie Elhadad
    备注:Accepted and presented in Machine Learning for Healthcare 2019
    链接:https://arxiv.org/abs/1908.10226

    【5】 Learning Continually from Low-shot Data Stream
    标题:从低速数据流中不断学习
    作者: Canyu Le, Lei Zhang
    链接:https://arxiv.org/abs/1908.10223

    【6】 Urban flows prediction from spatial-temporal data using machine learning: A survey
    标题:利用机器学习从时空数据预测城市流量:一项调查
    作者: Peng Xie, Junbo Zhang
    链接:https://arxiv.org/abs/1908.10218

    【7】 Blended Convolution and Synthesis for Efficient Discrimination of 3D Shapes
    标题:用于三维形状识别的混合卷积和合成
    作者: Sameera Ramasinghe, Stephen Gould
    链接:https://arxiv.org/abs/1908.10209

    【8】 The many faces of deep learning
    标题:深度学习的许多面孔
    作者: Raul Vicente
    备注:18 pages
    链接:https://arxiv.org/abs/1908.10206

    【9】 A Machine Learning Approach for Smartphone-based Sensing of Roads and Driving Style
    标题:一种基于智能手机的道路和驾驶风格感知的机器学习方法
    作者: M. Ricardo Carlos
    链接:https://arxiv.org/abs/1908.10187

    【10】 Matrix embedding method in match for session-based recommendation
    标题:基于会话的推荐匹配中的矩阵嵌入方法
    作者: Qizhi Zhang, Anxiang Zeng
    链接:https://arxiv.org/abs/1908.10180

    【11】 Key Protected Classification for Collaborative Learning
    标题:协作学习的关键保护分类
    作者: Mert Bülent Sarıyıldız, Erman Ayday
    备注:\c{opyright} 2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 license this http URL
    链接:https://arxiv.org/abs/1908.10172

    【12】 Incremental Improvement of a Question Answering System by Re-ranking Answer Candidates using Machine Learning
    标题:通过使用机器学习重新排序答案候选者对问答系统进行增量改进
    作者: Michael Barz, Daniel Sonntag
    备注:Accepted for oral presentation at tenth International Workshop on Spoken Dialogue Systems Technology (IWSDS) 2019
    链接:https://arxiv.org/abs/1908.10149

    【13】 Automatic Detection of ECG Abnormalities by using an Ensemble of Deep Residual Networks with Attention
    标题:利用带注意的深层残差网络集合自动检测ECG异常
    作者: Yang Liu, Henggui Zhang
    链接:https://arxiv.org/abs/1908.10088

    【14】 Finite size corrections for neural network Gaussian processes
    标题:神经网络高斯过程的有限尺寸修正
    作者: Joseph M. Antognini
    备注:Presented at the 2019 ICML Workshop on Theoretical Physics for Deep Learning
    链接:https://arxiv.org/abs/1908.10030

    【15】 Real-world Conversational AI for Hotel Bookings
    标题:酒店预订的现实世界对话人工智能
    作者: Bai Li, Hussein Fazal
    备注:Accepted to IEEE AI4I 2019 (International Conference on Artificial Intelligence for Industries)
    链接:https://arxiv.org/abs/1908.10001

    【16】 Automated Fashion Size Normalization
    标题:服装尺寸自动归一化
    作者: Eddie S.J. Du, David H. Wayne
    链接:https://arxiv.org/abs/1908.09980

    【17】 DeepHoyer: Learning Sparser Neural Network with Differentiable Scale-Invariant Sparsity Measures
    标题:DeepHoyer:具有可微尺度不变稀疏测度的学习稀疏神经网络
    作者: Huanrui Yang, Hai Li
    链接:https://arxiv.org/abs/1908.09979

    【18】 Private Stochastic Convex Optimization with Optimal Rates
    标题:具有最优率的私有随机凸优化
    作者: Raef Bassily, Abhradeep Thakurta
    链接:https://arxiv.org/abs/1908.09970

    【19】 Theory and Evaluation Metrics for Learning Disentangled Representations
    标题:学习解缠表示的理论和评价指标
    作者: Kien Do, Truyen Tran
    链接:https://arxiv.org/abs/1908.09961

    【20】 An empirical comparison between stochastic and deterministic centroid initialisation for K-Means variations
    标题:K均值变化的随机质心初始化和确定性质心初始化的经验比较
    作者: Avgoustinos Vouros (1), (2) Numerical Algorithms Group (NAG))
    链接:https://arxiv.org/abs/1908.09946

    【21】 On the Bounds of Function Approximations
    标题:关于函数逼近的界
    作者: Adrian de Wynter
    备注:Accepted as a full paper at ICANN 2019. The final, authenticated publication will be available at this https URL
    链接:https://arxiv.org/abs/1908.09942

    【22】 Stochastic Optimization for Non-convex Inf-Projection Problems
    标题:非凸inf投影问题的随机优化
    作者: Yan Yan, Tianbao Yang
    链接:https://arxiv.org/abs/1908.09941

    【23】 Leveraging External Knowledge for Out-Of-Vocabulary Entity Labeling
    标题:利用外部知识进行词汇外实体标注
    作者: Adrian de Wynter, Lambert Mathias
    链接:https://arxiv.org/abs/1908.09936

    【24】 Multi-stage Deep Classifier Cascades for Open World Recognition
    标题:用于开放世界识别的多级深度分类器级联
    作者: Xiaojie Guo, Liang Zhao
    备注:This paper has been accepted by CIKM 2019
    链接:https://arxiv.org/abs/1908.09931

    【25】 Complementary-Similarity Learning using Quadruplet Network
    标题:基于四元组网络的互补相似学习
    作者: Mansi Ranjit Mane, Kannan Achan
    链接:https://arxiv.org/abs/1908.09928

    【26】 SynGAN: Towards Generating Synthetic Network Attacks using GANs
    标题:SynGAN:利用GANS生成合成网络攻击
    作者: Jeremy Charlier, Henning Schulzrinne
    链接:https://arxiv.org/abs/1908.09899

    【27】 Privacy-Preserving Tensor Factorization for Collaborative Health Data Analysis
    标题:协同健康数据分析中隐私保护的张量分解
    作者: Jing Ma, Xiaoqian Jiang
    链接:https://arxiv.org/abs/1908.09888

    【28】 Dimension independent bounds for general shallow networks
    标题:一般浅网络的维数无关界
    作者: Hrushikesh N. Mhaskar
    链接:https://arxiv.org/abs/1908.09880

    【29】 Bottom-up Higher-Resolution Networks for Multi-Person Pose Estimation
    标题:用于多人姿态估计的自底向上高分辨率网络
    作者: Bowen Cheng, Lei Zhang
    链接:https://arxiv.org/abs/1908.10357

    【30】 LiDARTag: A Real-Time Fiducial Tag using Point Clouds
    标题:LiDARTag:一种使用点云的实时基准标签
    作者: Jiunn-Kai Huang, Jessy W. Grizzle
    链接:https://arxiv.org/abs/1908.10349

    【31】 A novel active learning-based Gaussian process metamodelling strategy for estimating the full probability distribution in forward UQ analysis
    标题:一种新的基于主动学习的高斯过程元建模策略用于估计正向UQ分析中的全概率分布
    作者: Ziqi Wang, Marco Broccardo
    链接:https://arxiv.org/abs/1908.10341

    【32】 Physics-Based Rendering for Improving Robustness to Rain
    标题:基于物理的绘制提高对雨的鲁棒性
    作者: Shirsendu Sukanta Halder, Raoul de Charette
    备注:ICCV 2019. Supplementary pdf / videos available on project page
    链接:https://arxiv.org/abs/1908.10335

    【33】 Deep Reinforcement Learning for Chatbots Using Clustered Actions and Human-Likeness Rewards
    标题:利用集群动作和类人奖励的聊天机器人深度强化学习
    作者: Heriberto Cuayáhuitl, Jihie Kim
    备注:In International Joint Conference of Neural Networks (IJCNN), 2019
    链接:https://arxiv.org/abs/1908.10331

    【34】 On the Minimax Optimality of Estimating the Wasserstein Metric
    标题:Wasserstein度量估计的Minimax最优性
    作者: Tengyuan Liang
    链接:https://arxiv.org/abs/1908.10324

    【35】 Bridging the Gap for Tokenizer-Free Language Models
    标题:为无令牌器语言模型架起桥梁
    作者: Dokook Choe, Noah Constant
    链接:https://arxiv.org/abs/1908.10322

    【36】 Physics Informed Data Driven model for Flood Prediction: Application of Deep Learning in prediction of urban flood development
    标题:洪水预测的物理信息数据驱动模型:深度学习在城市洪水发展预测中的应用
    作者: Kun Qian, Christian Claudel
    链接:https://arxiv.org/abs/1908.10312

    【37】 A Framework for Model Search Across Multiple Machine Learning Implementations
    标题:一种跨多个机器学习实现的模型搜索框架
    作者: Yoshiki Takahashi, Kazuyuki Shudo
    备注:Proc. 15h Int'l eScience Conference (eScience 2019), September 2019
    链接:https://arxiv.org/abs/1908.10310

    【38】 On the Risk of Minimum-Norm Interpolants and Restricted Lower Isometry of Kernels
    标题:关于最小范数插值的风险和核的限制下等距
    作者: Tengyuan Liang, Xiyu Zhai
    链接:https://arxiv.org/abs/1908.10292

    【39】 A Deep Reinforcement Learning Approach to Multi-component Job Scheduling in Edge Computing
    标题:边缘计算中多部件作业调度的深度强化学习方法
    作者: Zhi Cao, Benyuan Liu
    链接:https://arxiv.org/abs/1908.10290

    【40】 Statistical and Computational Trade-Offs in Kernel K-Means
    标题:核K-均值中的统计和计算权衡
    作者: Daniele Calandriello, Lorenzo Rosasco
    链接:https://arxiv.org/abs/1908.10284

    【41】 TEST: an End-to-End Network Traffic Examination and Identification Framework Based on Spatio-Temporal Features Extraction
    标题:TEST:一种基于时空特征提取的端到端网络流量检测与识别框架
    作者: Yi Zeng, Han Qiu
    链接:https://arxiv.org/abs/1908.10271

    【42】 Model Selection With Graphical Neighbour Information
    标题:具有图形化邻域信息的模型选择
    作者: Robert O'Shea
    链接:https://arxiv.org/abs/1908.10243

    【43】 3D Convolutional Neural Networks Image Registration Based on Efficient Supervised Learning from Artificial Deformations
    标题:基于人工变形有效监督学习的三维卷积神经网络图像配准
    作者: Hessam Sokooti, Marius Staring
    链接:https://arxiv.org/abs/1908.10235

    【44】 A hybrid deep learning framework for integrated segmentation and registration: evaluation on longitudinal white matter tract changes
    标题:一种用于集成分割和配准的混合深度学习框架:评估纵向白质束变化
    作者: Bo Li, Esther Bron
    备注:MICCAI 2019 (oral presentation)
    链接:https://arxiv.org/abs/1908.10221

    【45】 Reproducible White Matter Tract Segmentation Using 3D U-Net on a Large-scale DTI Dataset
    标题:在大规模DTI数据集上使用3DU-Net的可重复性白质束分割
    作者: Bo Li, Esther Bron
    备注:Machine Learning in Medical Imaging (MLMI), 2018
    链接:https://arxiv.org/abs/1908.10219

    【46】 Cross-modality Knowledge Transfer for Prostate Segmentation from CT Scans
    标题:用于CT扫描前列腺分割的跨模态知识转移
    作者: Yucheng Liu, Sachin Jambawalikar
    备注:9 pages, 3 figures, 2019 MICCAI-DART workshop
    链接:https://arxiv.org/abs/1908.10208

    【47】 Robust Tensor Recovery with Fiber Outliers for Traffic Events
    标题:基于光纤异常值的交通事件鲁棒张量恢复
    作者: Yue Hu, Dan Work
    链接:https://arxiv.org/abs/1908.10198

    【48】 Large Scale Landmark Recognition via Deep Metric Learning
    标题:基于深度度量学习的大规模地标识别
    作者: Andrei Boiarov, Eduard Tyantov
    备注:Accepted at CIKM 2019
    链接:https://arxiv.org/abs/1908.10192

    【49】 SAERMA: Stacked Autoencoder Rule Mining Algorithm for the Interpretation of Epistatic Interactions in GWAS for Extreme Obesity
    标题:SAERMA:用于解释GWAS中极端肥胖的上位性相互作用的堆叠自动编码器规则挖掘算法
    作者: Casimiro Aday Curbelo Montañez, Francesco Falciani
    链接:https://arxiv.org/abs/1908.10166

    【50】 A hybrid parametric-deep learning approach for sound event localization and detection
    标题:一种用于声音事件定位和检测的混合参数深度学习方法
    作者: Andres Perez-Lopez, Xavier Serra
    备注:5 pages, 5 figures, submitted to DCASE2019 Workshop
    链接:https://arxiv.org/abs/1908.10133

    【51】 Learning-Based Video Game Development in MLP@UoM: An Overview
    标题:基于学习的MLP@UOM视频游戏开发综述
    作者: Ke Chen
    备注:8 pages, 15 figures Invited paper presented as a keynote speech, ICEEIE'19 in Bali, Indonesia
    链接:https://arxiv.org/abs/1908.10127

    【52】 Proactive Intention Recognition for Joint Human-Robot Search and Rescue Missions through Monte-Carlo Planning in POMDP Environments
    标题:POMDP环境下基于蒙特卡罗规划的人-机器人联合搜索救援任务的主动意图识别
    作者: Dimitri Ognibene, Letizia Marchegiani
    链接:https://arxiv.org/abs/1908.10125

    【53】 Multi-Layer Softmaxing during Training Neural Machine Translation for Flexible Decoding with Fewer Layers
    标题:多层Softmaxing训练神经机器翻译用于少层灵活解码
    作者: Raj Dabre, Atsushi Fujita
    链接:https://arxiv.org/abs/1908.10118

    【54】 VAE-based Domain Adaptation for Speaker Verification
    标题:基于VAE的说话人验证领域适配
    作者: Xueyi Wang, Dong Wang
    链接:https://arxiv.org/abs/1908.10092

    【55】 FinBERT: Financial Sentiment Analysis with Pre-trained Language Models
    标题:FinBERT:使用预先训练的语言模型进行金融情绪分析
    作者: Dogu Araci
    备注:This thesis is submitted in partial fulfillment for the degree of Master of Science in Information Studies: Data Science, University of Amsterdam. June 25, 2019
    链接:https://arxiv.org/abs/1908.10063

    【56】 Tiny but Accurate: A Pruned, Quantized and Optimized Memristor Crossbar Framework for Ultra Efficient DNN Implementation
    标题:微小但精确:用于超高效DNN实现的修剪、量化和优化的记忆电阻交叉开关框架
    作者: Xiaolong Ma, Yanzhi Wang
    链接:https://arxiv.org/abs/1908.10017

    【57】 Unsupervised Deep Feature Transfer for Low Resolution Image Classification
    标题:用于低分辨率图像分类的无监督深度特征转移
    作者: Yuanwei Wu, Guanghui Wang
    备注:4 pages, accepted to ICCV19 Workshop and Challenge on Real-World Recognition from Low-Quality Images and Videos
    链接:https://arxiv.org/abs/1908.10012

    【58】 Research on Autonomous Maneuvering Decision of UCAV based on Approximate Dynamic Programming
    标题:基于近似动态规划的UCAV自主机动决策研究
    作者: Zhencai Hu, Fei Wang
    链接:https://arxiv.org/abs/1908.10010

    【59】 Learning Reinforced Attentional Representation for End-to-End Visual Tracking
    标题:用于端到端视觉跟踪的学习增强注意表示
    作者: Peng Gao, Fei Wang
    链接:https://arxiv.org/abs/1908.10009

    【60】 Deep Learning-Based Strategy for Macromolecules Classification with Imbalanced Data from Cellular Electron Cryotomography
    标题:基于深度学习的细胞电子冷断层扫描不平衡数据大分子分类策略
    作者: Ziqian Luo, Min Xu
    链接:https://arxiv.org/abs/1908.09993

    【61】 Locally Optimized Random Forests
    标题:局部优化随机森林
    作者: Tim Coleman, Lucas Mentch
    链接:https://arxiv.org/abs/1908.09967

    【62】 PixelVAE++: Improved PixelVAE with Discrete Prior
    标题:PixelVAE+:具有离散优先级的改进PixelVAE
    作者: Hossein Sadeghi, Mohammad H. Amin
    链接:https://arxiv.org/abs/1908.09948

    【63】 Fashion Image Retrieval with Capsule Networks
    标题:基于胶囊网络的服装图像检索
    作者: Furkan Kınlı, Furkan Kıraç
    备注:Accepted to the International Conference on Computer Vision, ICCV 2019, Workshop on Computer Vision for Fashion, Art and Design
    链接:https://arxiv.org/abs/1908.09943

    【64】 Gender Prediction from Tweets: Improving Neural Representations with Hand-Crafted Features
    标题:来自推文的性别预测:用手工制作的特征改进神经表征
    作者: Erhan Sezerer, Selma Tekir
    链接:https://arxiv.org/abs/1908.09919

    【65】 Convex Programming for Estimation in Nonlinear Recurrent Models
    标题:非线性递归模型估计的凸规划
    作者: Sohail Bahmani, Justin Romberg
    备注:18 pages
    链接:https://arxiv.org/abs/1908.09915

    【66】 A Weakly Supervised Method for Instance Segmentation of Biological Cells
    标题:一种弱监督的生物细胞分割方法
    作者: Fidel A. Guerrero-Peña, Alexandre Cunha
    备注:Accepted at MICCAI Worshop 2019
    链接:https://arxiv.org/abs/1908.09891

    【67】 Multi-Granularity Representations of Dialog
    标题:对话框的多粒度表示
    作者: Shikib Mehri, Maxine Eskenazi
    备注:Accepted as a long paper at EMNLP 2019
    链接:https://arxiv.org/abs/1908.09890

    【68】 BULNER: BUg Localization with word embeddings and NEtwork Regularization
    标题:Bulner:使用Word嵌入和网络规则化的Bug本地化
    作者: Jacson Rodrigues Barbosa, Marcio E. Delamaro
    备注:VII Workshop on Software Visualization, Evolution and Maintenance (VEM '19)
    链接:https://arxiv.org/abs/1908.09876

    【69】 Sufficient Representations for Categorical Variables
    标题:范畴变量的充分表示
    作者: Jonathan Johannemann, Stefan Wager
    链接:https://arxiv.org/abs/1908.09874

    【70】 End-to-End Conditional GAN-based Architectures for Image Colourisation
    标题:用于图像着色的端到端条件GaN基结构
    作者: Marc Górriz, Noel E. O'Connor
    备注:IEEE 21st International Workshop on Multimedia Signal Processing, 27-29 Sept 2019, Kuala Lumpur, Malaysia
    链接:https://arxiv.org/abs/1908.09873

    【71】 Machine learning algorithms to infer trait matching and predict species interactions in ecological networks
    标题:用于推断特征匹配和预测生态网络中物种相互作用的机器学习算法
    作者: Maximilian Pichler, Florian Hartig
    链接:https://arxiv.org/abs/1908.09853

    【72】 Architecture Search by Estimation of Network Structure Distributions
    标题:基于网络结构分布估计的体系结构搜索
    作者: Anton Muravev, Moncef Gabbouj
    链接:https://arxiv.org/abs/1908.06886

    机器翻译,仅供参考

    相关文章

      网友评论

        本文标题:机器学习每日论文速递[08.28]

        本文链接:https://www.haomeiwen.com/subject/yxbmectx.html