美文网首页高等数学
高等数学上期末卷题选(3)

高等数学上期末卷题选(3)

作者: 溺于恐 | 来源:发表于2018-12-03 19:49 被阅读18次

    1.\lim\limits_{n\to \infty}n({1\over n^2+1}+{1\over n^2+2^2}+\cdots+{1\over n^2+n^2})

    解:

    原式=\lim\limits_{n\to \infty}{1\over n}({1\over 1+({1\over n})^2}+{1\over 1+({2\over n})^2}+\cdots+{1\over ({n\over n})^2})

    =\sum\limits_{i=1}^n{1\over 1+({i\over n})^2}\cdot {1\over n}

    由定积分的定义知

    上式=\int_0^1d{x\over 1+x^2}

    =arctanx|_0^1

    ={\pi\over 4}


    2.\int {1\over x^2+x+1}dx

    解:

    原式=\int {1\over (x+{1\over 2})^2+{3\over 4}}d(x+{1\over 2})

    ={2\over \sqrt{3}}arctan{2x+1\over \sqrt{3}}+C

    3.\int_0^2 x\sqrt{2x-x^2}dx

    解:

    原式=\int_0^2 x\sqrt{1-(x-1)^2}dx

    令x-1=sint,则t=arcsin(x-1)

    原式=\int_0^{\pi\over 2} (sint+1)cost\cdot cost dt

    =2\int_0^{\pi\over 2} cos^2tdt

    =2\cdot {1\over 2}\cdot{\pi\over 2}={\pi\over 2}


    4.在(1,e)内求一点x_0使图中阴影部分的面积之和最小

    6.png

    解:

    阴影部分面积和为

    S=\int_1^{x_0}\sqrt{lnt}dt+e-x_0-\int_{x_0}^e\sqrt{lnt}dt

    A'(x_0)=2\sqrt{lnx_0}-1

    令A'(x_0)=0得驻点x_0=\sqrt[4]{e}

    驻点唯一,且为极小值点,所以此时阴影部分面积之和最小


    5.已知f(x)是连续函数,证明:\int_0^\pi xf(sinx)dx={\pi\over 2}\int_0^\pi f(sinx)dx并计算:\int_0^\pi xsin^3xdx

    解:

    设x=\pi-t,则

    \int_0^\pi xf(sinx)dx=-\int_\pi^0(\pi -t)f(sin(\pi-t))dt

    =\int_0^\pi (\pi-t)f(sint)dt

    =\int_0^\pi (\pi-x)f(sinx)dx

    =\pi\int_0^\pi f(sinx)dx-\int_0^\pi xf(sinx)dx

    \therefore \int_0^\pi xf(sinx)dx={\pi\over 2}\int_0^\pi f(sinx)dx

    \int_0^\pi xsin^3xdx={\pi\over 2}\int_0^\pi sin^3xdx

    ={\pi\over 2}\int_0^\pi (cos^2x-1)dcosx

    ={\pi\over 2}({1\over 3}cos^3x-cosx)|_0^\pi={2\pi\over 3}


    6.设f(x)=xcosx-x

    (1)当x\to 0时,f(x)是关于x的_____阶无穷小$

    (2)f^{(100)}(x)=_____

    答:(1)3 (2)xcosx+100sinx


    7.设\begin{cases}x=t^2-2t\\ y=t^4-4t\end{cases},求{dy\over dx},{d^y\over dx^2}

    解:

    {dy\over dx}={dy/dt\over dx/dt}

    ={4t^3-4\over 2t-2}=2(t^2+t+1)

    {d^2y\over dx^2}={d\over dt}({dy\over dx}){1\over dx/dt}

    ={2(2t+1)\over 2t-2}={2t+1\over t-1}


    8.证明:当0\lt x\lt {\pi\over 2}时,4sinx+tanx\gt 4x

    证:

    设f(x)=4sinx+tanx-4x,则

    f'(x)=4cosx+sec^2x-4

    当0\lt x\lt {\pi\over 2}时,0\lt cosx\lt 1

    \therefore cosx\gt cos^2x

    \therefore f'(x)=4cosx+sec^2x-4\gt 4cos^2x+sec^2x-4

    又4cos^2x+sec^2x-4=(2cosx-secx)^2\ge 0

    \therefore f'(x)\gt 0,f(x)单调递增

    \therefore f(x)\gt f(0)=0

    即4sinx+tanx\gt 4x


    9.\int ln(1+x^2)dx

    解:

    原式=xln(1+x^2)-\int {x\cdot 2x\over 1+x^2}dx

    =xln(1+x^2)-2\int {x^2+1-1\over 1+x^2}dx

    =xln(1+x^2)-2\int (1-{1\over 1+x^2})dx

    =xln(1+x^2)-2x+2arctanx+C


    10.求由抛物线y=x^2与圆x^2+y^2=2所围成图形的面积A

    7.png

    解:

    抛物线与圆交点为(-1,1)和(1,1)

    A=\int_{-1}^1(\sqrt{2-x^2}-x^2)dx

    =2\int_0^1\sqrt{2-x^2}-{2\over 3}x^3|_0^1

    设x=\sqrt{2}sint,则dx=\sqrt{2}costdt

    A=2\int_0^{\pi\over 4} 2cos^2tdt-{2\over 3}

    =2\int_0^{\pi\over 4} (1+cos2t)dt-{2\over 3}

    =2(t+{1\over 2}sin2t)|_0^{\pi\over 4}-{2\over 3}={\pi\over 2}+{1\over 3}


    11.设f(x)在[a,b]上连续,证明:\int_a^bf(x)dx=\int_a^bf(a+b-x)dx,并计算I=\int_{\pi\over 6}^{\pi\over 3}{sin^2x\over x(\pi-2x)dx

    解:

    设x=a+b-t,则dx=-dt

    x:a\to b,t:b\to a

    \int_a^bf(x)dx=-\int_b^af(a+b-t)dt

    =\int_a^bf(a+b-t)dt

    =\int_a^bf(a+b-x)dx

    I=\int_{\pi\over 6}^{\pi\over 3}{sin^2x\over x(\pi-2x)}dx

    =\int_{\pi\over 6}^{\pi\over 3}{sin^2({\pi\over 2}-x)\over ({\pi\over 2}-x)(\pi-2({\pi\over 2}-x))}dx

    =\int_{\pi\over 6}^{\pi\over 3}{cos^2x\over (\pi-2x)x}dx

    \therefore I={1\over 2}(\int_{\pi\over 6}^{\pi\over 3}{sin^2x\over x(\pi-2x)}dx+\int_{\pi\over 6}^{\pi\over 3}{cos^2x\over (\pi-2x)x}dx)

    ={1\over 2}\int_{\pi\over 6}^{\pi\over 3}{1\over (\pi-2x)x}dx

    ={1\over 2\pi}\int_{\pi\over 6}^{\pi\over 3}({1\over x}+{2\over \pi-2x})dx

    ={1\over 2\pi}[lnx-ln(\pi-2x)]|_{\pi\over 6}^{\pi\over 3}

    ={1\over 2\pi}ln{x\over \pi-2x}|_{\pi\over 6}^{\pi\over 3}={ln2\over \pi}

    相关文章

      网友评论

        本文标题:高等数学上期末卷题选(3)

        本文链接:https://www.haomeiwen.com/subject/rheucqtx.html