大对象直接进入老年代
大对象就是需要大量连续内存空间的对象(比如:字符串、数组)。
长期存活的对象将进入老年代
如果对象在 Eden 出生并经过第一次 Minor GC 后仍然能够存活,并且能被 Survivor 容纳的话,将被移动到 Survivor 空间中,并将对象年龄设为 1.对象在 Survivor 中每熬过一次 MinorGC,年龄就增加 1 岁,当它的年龄增加到一定程度(默认为 15 岁),就会被晋升到老年代中。
GC收集
部分收集 (Partial GC):
新生代收集(Minor GC / Young GC):只对新生代进行垃圾收集;
老年代收集(Major GC / Old GC):只对老年代进行垃圾收集。需要注意的是 Major GC 在有的语境中也用于指代整堆收集;
混合收集(Mixed GC):对整个新生代和部分老年代进行垃圾收集。
整堆收集 (Full GC):收集整个 Java 堆和方法区。
空间分配担保
空间分配担保是为了确保在 Minor GC 之前老年代本身还有容纳新生代所有对象的剩余空间。
如何判断对象已经死亡?
1、引用计数法:给对象中添加一个引用计数器,每当有一个地方引用它,计数器就加 1;当引用失效,计数器就减 1;任何时候计数器为 0 的对象就是不可能再被使用的。但是目前主流的虚拟机中并没有选择这个算法来管理内存,其最主要的原因是它很难解决对象之间相互循环引用的问题。
2、可达性分析算法:通过一系列的称为 “GC Roots” 的对象作为起点,从这些节点开始向下搜索,节点所走过的路径称为引用链,当一个对象到 GC Roots 没有任何引用链相连的话,则证明此对象是不可用的,需要被回收。
哪些对象可以作为 GC Roots 呢?
虚拟机栈(栈帧中的本地变量表)中引用的对象
本地方法栈(Native 方法)中引用的对象
方法区中类静态属性引用的对象
方法区中常量引用的对象
所有被同步锁持有的对象
对象可以被回收,就代表一定会被回收吗?
即使在可达性分析法中不可达的对象,也并非是“非死不可”的,这时候它们暂时处于“缓刑阶段”,要真正宣告一个对象死亡,至少要经历两次标记过程;第一次标记并且进行一次筛选,筛选的条件是此对象是否有必要执行 finalize 方法。当对象没有覆盖 finalize 方法,或 finalize 方法已经被虚拟机调用过时,虚拟机将这两种情况视为没有必要执行。
被判定为需要执行的对象将会被放在一个队列中进行第二次标记,除非这个对象与引用链上的任何一个对象建立关联,否则就会被真的回收
强引用
如果一个对象具有强引用,那就类似于必不可少的生活用品,垃圾回收器绝不会回收它。
软引用
如果一个对象只具有软引用,那就类似于可有可无的生活用品。如果内存空间足够,垃圾回收器就不会回收它,如果内存空间不足了,就会回收这些对象的内存。只要垃圾回收器没有回收它,该对象就可以被程序使用。软引用可用来实现内存敏感的高速缓存。
弱引用
如果一个对象只具有弱引用,那就类似于可有可无的生活用品。弱引用与软引用的区别在于:只具有弱引用的对象拥有更短暂的生命周期。在垃圾回收器线程扫描它所管辖的内存区域的过程中,一旦发现了只具有弱引用的对象,不管当前内存空间足够与否,都会回收它的内存。
虚引用
虚引用并不会决定对象的生命周期。如果一个对象仅持有虚引用,那么它就和没有任何引用一样,在任何时候都可能被垃圾回收。
虚引用主要用来跟踪对象被垃圾回收的活动。
如何判断一个常量是废弃常量?
在字符串常量池中存在字符串 "abc",如果当前没有任何 String 对象引用该字符串常量的话,就说明常量 "abc" 就是废弃常量
如何判断一个类是无用的类
1、该类所有的实例都已经被回收,也就是 Java 堆中不存在该类的任何实例。
2、加载该类的 ClassLoader 已经被回收。
3、该类对应的 java.lang.Class 对象没有在任何地方被引用,无法在任何地方通过反射访问该类的方法。
垃圾收集算法
标记-清除算法
首先标记出所有不需要回收的对象,在标记完成后统一回收掉所有没有被标记的对象
标记-整理算法
首先标记出所有不需要回收的对象,让所有存活的对象向一端移动,然后直接清理掉端边界以外的内存。
标记-复制算法
将内存分为大小相同的两块,每次使用其中的一块。当这一块的内存使用完后,就将还存活的对象复制到另一块去,然后再把使用的空间一次清理掉。这样就使每次的内存回收都是对内存区间的一半进行回收。
分代收集算法
在新生代中,每次收集都会有大量对象死去,所以可以选择”标记-复制“算法,只需要付出少量对象的复制成本就可以完成每次垃圾收集。而老年代的对象存活几率是比较高的,而且没有额外的空间对它进行分配担保,所以我们必须选择“标记-清除”或“标记-整理”算法进行垃圾收集。
垃圾收集器
Serial 收集器
是一个单线程收集器, “单线程” 的意义不仅仅意味着它只会使用一条垃圾收集线程去完成垃圾收集工作,更重要的是它在进行垃圾收集工作的时候必须暂停其他所有的工作线程,直到它收集结束。
新生代采用标记-复制算法,老年代采用标记-整理算法。
Serial 收集器对于运行在 Client 模式下的虚拟机来说是个不错的选择。
ParNew 收集器
ParNew 收集器其实就是 Serial 收集器的多线程版本,除了使用多线程进行垃圾收集外,其余行为和 Serial 收集器完全一样。
新生代采用标记-复制算法,老年代采用标记-整理算法。
Parallel Scavenge 收集器
Parallel Scavenge 收集器也是使用标记-复制算法的多线程收集器,它看上去几乎和 ParNew 都一样。
Serial Old 收集器
Serial 收集器的老年代版本,它同样是一个单线程收集器。
Parallel Old 收集器
Parallel Scavenge 收集器的老年代版本。使用多线程和“标记-整理”算法。在注重吞吐量以及 CPU 资源的场合,都可以优先考虑 Parallel Scavenge 收集器和 Parallel Old 收集器。
CMS 收集器
CMS收集器是一种以获取最短回收停顿时间为目标的收集器。
CMS 收集器是一种 “标记-清除”算法实现的,它的运作过程:
初始标记:暂停所有的其他线程,并记录下直接与 root 相连的对象,速度很快 ;
并发标记: 同时开启 GC 和用户线程,用一个闭包结构去记录可达对象。但在这个阶段结束,这个闭包结构并不能保证包含当前所有的可达对象。因为用户线程可能会不断的更新引用域,所以 GC 线程无法保证可达性分析的实时性。所以这个算法里会跟踪记录这些发生引用更新的地方。
重新标记: 重新标记阶段就是为了修正并发标记期间因为用户程序继续运行而导致标记产生变动的那一部分对象的标记记录,这个阶段的停顿时间一般会比初始标记阶段的时间稍长,远远比并发标记阶段时间短
并发清除: 开启用户线程,同时 GC 线程开始对未标记的区域做清扫。
G1 收集器
G1 是一款面向服务器的垃圾收集器,以极高概率满足 GC 停顿时间要求的同时,还具备高吞吐量性能特征。
与 CMS 的“标记-清除”算法不同,G1 从整体来看是基于“标记-整理”算法实现的收集器;从局部上来看是基于“标记-复制”算法实现的。
G1 收集器的运作大致分为以下几个步骤:
初始标记
并发标记
最终标记
筛选回收
网友评论