美文网首页
二叉查找树之四:红黑树删除结点

二叉查找树之四:红黑树删除结点

作者: longLiveData | 来源:发表于2020-05-26 16:54 被阅读0次

红黑树特性

红黑树的特性(规则)如下:

1.结点是红色或黑色。

2.根结点是黑色。

3.每个叶子结点都是黑色的空结点(NIL结点)。

4.每个红色结点的两个子结点都是黑色。(从每个叶子到根的所有路径上不能有两个连续的红色结点)

5.从任一结点到其每个叶子的所有路径都包含相同数目的黑色结点。

第一步:按照二叉查找树删除结点的规则来删除

首先,按照二叉查找树删除结点的规则来删除结点。这样删除红黑树的结点会对规则产生影响:

上图的这颗红黑树,待删除的是黑色结点1,有一个右孩子。根据二叉查找树的删除流程,我们让右孩子结点6直接取代结点1:

显然,这颗新的二叉树打破了两个规则:

规则4. 每个红色结点的两个子结点都是黑色。

规则5. 从任一结点到其每个叶子的所有路径都包含相同数目的黑色结点。

第二步:按照规则进行调整

第一步:如果待删除结点有两个非空的孩子结点,转化成待删除结点只有一个孩子(或没有孩子)的情况。

上面例子是一颗红黑树的局部,标数字的三角形代表任意形态的子树,假设结点8是待删除结点。

根据二叉查找树删除流程,由于结点8有两个孩子,我们选择仅大于8的结点10复制到8的位置,结点颜色变成待删除结点的颜色:

接下来我们需要删除红色的结点10:

红色结点10能成为仅大于8的结点,必定没有左孩子结点,所以问题转换成了待删除结点只有一个右孩子(或没有孩子)的情况。接下来我们进入第二步。

第二步:根据待删除结点和其唯一子结点的颜色,分情况处理。

情况1,自身是红色,子结点是黑色:

这种情况最简单,按照二叉查找树的删除操作,删除结点1即可:

情况2,自身是黑色,子结点是红色:

这种情况也很简单,首先按照二叉查找树的删除操作,删除结点1:

此时,这条路径凭空减少了一个黑色结点,那么我们把结点2变成黑色即可:

情况3,自身是黑色,子结点也是黑色,或者子结点是空叶子结点:

这种情况最复杂,涉及到很多变化。首先我们还是按照二叉查找树的删除操作,删除结点1:

显然,这条路径上减少了一个黑色结点,而且结点2再怎么变色也解决不了。

这时候我们进入第三步,专门解决父子双黑的情况。

第三步:遇到双黑结点,在子结点顶替父结点之后,分成6种子情况处理。

子情况1,结点2是红黑树的根结点:

此时所有路径都减少了一个黑色结点,并未打破规则,不需要调整。

子情况2,结点2的父亲、兄弟、侄子结点都是黑色:

此时,我们直接把结点2的兄弟结点B改为红色:

这样一来,原本结点2所在的路径少了一个黑色结点,现在结点B所在的路径也少了一个黑色结点,两边“扯平”了。

可是,结点A以下的每一条路径都减少了一个黑色结点,与结点A之外的其他路径又造成了新的不平衡啊?

没关系,我们让结点A扮演原先结点2的角色,进行递归操作,重新判断各种情况。

子情况3,结点2的兄弟结点是红色:

首先以结点2的父结点A为轴,进行左旋:

然后结点A变成红色、结点B变成黑色:

这样的意义是什么呢?结点2所在的路径仍然少一个黑色结点呀?

别急,这样的变化有可能转换成子情况4、5、6中的任意一种,在子情况4、5、6当中会进一步解决。

子情况4,结点2的父结点是红色,兄弟和侄子结点是黑色:

这种情况,我们直接让结点2的父结点A变成黑色,兄弟结点B变成红色:

这样一来,结点2的路径补充了黑色结点,而结点B的路径并没有减少黑色结点,重新符合了红黑树的规则。

子情况5,结点2的父结点随意,兄弟结点B是黑色右孩子,左侄子结点是红色,右侄子结点是黑色:

这种情况下,首先以结点2的兄弟结点B为轴进行右旋:

接下来结点B变为红色,结点C变为黑色:

这样的变化转换成了子情况6。

子情况6,结点2的父结点随意,兄弟结点B是黑色右孩子,右侄子结点是红色:

首先以结点2的父结点A为轴左旋:

接下来让结点A和结点B的颜色交换,并且结点D变为黑色:

这样是否解决了问题呢?

经过结点2的路径由(随意+黑)变成了(随意+黑+黑),补充了一个黑色结点;

经过结点D的路径由(随意+黑+红)变成了(随意+黑),黑色结点并没有减少。

所以,这时候重新符合了红黑树的规则。

以上就是红黑树删除的全过程。

删除过程实例

给定下面这颗红黑树,待删除的是结点17:

第一步,由于结点17有两个孩子,子树当中仅大于17的结点是25,所以把结点25复制到17位置,保持黑色:

image

接下来,我们需要删除原本的结点25:

这个情况正好对应于第二步的情况三,即待删除结点是黑色,子结点是空叶子结点。

于是我们删除框框中结点25,进入第三步:

此时,框框中的结点虽然是空叶子结点,但仍然可以用于判断局面,当前局面符合子情况5的镜像:

于是我们通过左旋和变色,把子树转换成情况6的镜像:

再经过右旋、变色,子树最终成为了下面的样子:

这样一来,整颗二叉树又重新符合了红黑树的规则。

相关文章

  • 二叉查找树之二:红黑树

    红黑树 红黑树(Red Black Tree) 是一种自平衡二叉查找树,为了解决二叉查找树多次插入新结点导致的不平...

  • 彻底理解红黑树(三)之 删除

    彻底理解红黑树(一)之 二叉搜索树彻底理解红黑树(二)之 插入彻底理解红黑树(三)之 删除 前言 红黑树的删除情况...

  • 红黑树

    红黑树 红黑树和平衡二叉查找树(AVL树)类似,都是在进行插入和删除操作时通过特定操作保持二叉查找树的平衡,从而获...

  • 二叉查找树之四:红黑树删除结点

    红黑树特性 红黑树的特性(规则)如下: 1.结点是红色或黑色。 2.根结点是黑色。 3.每个叶子结点都是黑色的空结...

  • 红黑树笔记

    红黑树笔记 红黑树是平衡二叉查找树的一种。为了深入理解红黑树,我们需要从二叉查找树开始讲起。 BST 二叉查找树(...

  • (图文结合)详细描述红黑树如何左旋、右旋

    红黑树 首先要理解二叉查找树 二叉查找树(BST)具备什么特性呢? 左子树上所有结点的值均小于或等于它的根结点的值...

  • 彻底理解红黑树(一)之二叉搜索树

    彻底理解红黑树(一)之二叉搜索树彻底理解红黑树(二)之插入彻底理解红黑树(三)之删除 1. 二叉搜索树的定义 二叉...

  • TreeMap

    需要先了解红黑树,这是之前分析红黑树的文章。之前在分析红黑树时,我认为红黑树=二叉查找树+红黑平衡,关于二叉查找树...

  • 彻底理解红黑树(二)之 插入

    彻底理解红黑树(一)之 二叉搜索树彻底理解红黑树(二)之 插入彻底理解红黑树(三)之 删除 前言 红黑树的插入情况...

  • HashMap小探(三)之红黑树

    HashMap中的红黑树 红黑树 平衡二叉查找树 红黑树是一种平衡二叉查找树(Binary Search Tree...

网友评论

      本文标题:二叉查找树之四:红黑树删除结点

      本文链接:https://www.haomeiwen.com/subject/umlvahtx.html