网络库简单总结

作者: 黑石ZB | 来源:发表于2017-08-10 21:07 被阅读347次

    网络库的介绍

    1.HttpURLConnection

    API简单,体积较小,因而非常适用于Android项目,但是在android 2.2及以下版本中HttpUrlConnection存在着一些bug,所以建议在android 2.3以后使用HttpUrlConnection,在这之前使用的是HttpClient。

    2.HttpClient (Apache )

    高效稳定,但是维护成本高昂,故android 开发团队不愿意维护该库更青睐轻便的HttpUrlConnection。Android 5.0后已废弃该库

    3.OKHttp

    Square公司产品,OkHttp相比HttpURLConnection和HttpClient功能更加强大。

    4.Volley

    Volley是在2013年Google I/O大会上推出了一个新的网络通信框架,内部封装了HttpURLConnection和HttpClient, 解决了网络数据解析和线程切换的问题。
    主要用于解决通讯频率高,但传输数据量小的情景而对于大数据量的网络操作,比如说下载文件等,Volley的表现就会非常糟糕。

    其实Volley的使用是很简单的,总的来说就是发送一个http的请求,将请求加入到RequestQueue(请求队列)中,这里的RequestQueue是一个请求队列对象,它可以缓存所有的HTTP请求,然后按照一定的算法并发地发出这些请求。RequestQueue内部的设计就是非常合适高并发的,因此我们不必为每一次HTTP请求都创建一个RequestQueue对象,这是非常浪费资源的,基本上在每一个需要和网络交互的Activity中创建一个RequestQueue对象就足够了。

    总的来说我们常用的Volley就下面三个步骤:Volley.newRequestQueue(context).add(request);
    1. 创建一个RequestQueue对象。
    2. 创建一个StringRequest对象。
    3. 将StringRequest对象添加到RequestQueue里面。
    下面我们主要通过这三句话来分析一下Volley源码中的实现原理

    volley.png

    这是官方的关于Volley工作流程图 , 其中蓝色部分代表主线程,绿色部分代表缓存线程,橙色部分代表网络线程。我们在主线程中调用RequestQueue的add()方法来添加一条网络请求,这条请求会先被加入到缓存队列当中,如果发现可以找到相应的缓存结果就直接读取缓存并解析,然后回调给主线程。如果在缓存中没有找到结果,则将这条请求加入到网络请求队列中,然后处理发送HTTP请求,解析响应结果,写入缓存,并回调主线程。

    第一步:newRequestQueue(context)

     public static RequestQueue newRequestQueue(Context context) {
            return newRequestQueue(context, null);  //执行带两个参数的构造方法
        }
    

    这个方法仅仅只有一行代码,只是调用了newRequestQueue()的方法重载,并给第二个参数传入null。那我们看下带有两个参数的newRequestQueue()方法中的代码,如下所示:

     public static RequestQueue newRequestQueue(Context context, HttpStack stack) {
            File cacheDir = new File(context.getCacheDir(), DEFAULT_CACHE_DIR);
    
            String userAgent = "volley/0";
            try {
                String packageName = context.getPackageName();
                PackageInfo info = context.getPackageManager().getPackageInfo(packageName, 0);
                userAgent = packageName + "/" + info.versionCode;
            } catch (NameNotFoundException e) {
            }
    
            if (stack == null) {   //判断如果stack是等于null的,则去创建一个HttpStack对象
                if (Build.VERSION.SDK_INT >= 9) {
                    stack = new HurlStack();
                } else {
                    // Prior to Gingerbread, HttpUrlConnection was unreliable.
                    // See: http://android-developers.blogspot.com/2011/09/androids-http-clients.html
                    stack = new HttpClientStack(AndroidHttpClient.newInstance(userAgent));
                }
            }
    
            Network network = new BasicNetwork(stack);
    
            RequestQueue queue = new RequestQueue(new DiskBasedCache(cacheDir), network);
            queue.start();
    
            return queue;
        }
    

    在上面的代码中可以看出,如果stack是等于null的,则去创建一个HttpStack对象,这里会判断如果手机系统版本号是大于9(这里指SDK版本)的,则创建一个HurlStack的实例,否则就创建一个HttpClientStack的实例。实际上HurlStack的内部就是使用HttpURLConnection进行网络通讯的,而HttpClientStack的内部则是使用HttpClient进行网络通讯的,至于为什么说需要大于或等于9,是因为SDK为9时对应的系统为android2.3,版本2.3以后推荐使用HttpURLConnection.
    创建好了HttpStack之后,接下来又创建了一个Network对象,它是用于根据传入的HttpStack对象来处理网络请求的,紧接着new出一个RequestQueue对象,并调用它的start()方法进行启动,然后将RequestQueue返回,这样newRequestQueue()的方法就执行结束了。接下啦我们看看RequestQueue的start()方法内部执行内容:

        /** Number of network request dispatcher threads to start. */
        private static final int DEFAULT_NETWORK_THREAD_POOL_SIZE = 4;//默认网络请求线程数量
    
        /**
         * Starts the dispatchers in this queue.
         */
        public void start() {
            stop();  // Make sure any currently running dispatchers are stopped.
            // Create the cache dispatcher and start it.
            mCacheDispatcher = new CacheDispatcher(mCacheQueue, mNetworkQueue, mCache, mDelivery);
            mCacheDispatcher.start();
    
            // Create network dispatchers (and corresponding threads) up to the pool size.
            for (int i = 0; i < mDispatchers.length; i++) {
                NetworkDispatcher networkDispatcher = new NetworkDispatcher(mNetworkQueue, mNetwork,
                        mCache, mDelivery);
                mDispatchers[i] = networkDispatcher;
                networkDispatcher.start();
            }
        }
    

    这里先是创建了一个CacheDispatcher的实例,然后调用了它的start()方法,接着在一个for循环里去创建NetworkDispatcher的实例,并分别调用它们的start()方法。这里的CacheDispatcher和NetworkDispatcher都是继承自Thread的,而默认情况下for循环会执行四次,也就是说当调用了Volley.newRequestQueue(context)之后,就会有五个线程一直在后台运行,不断等待网络请求的到来,其中CacheDispatcher是缓存线程,NetworkDispatcher是网络请求线程。

    上面得到了RequestQueue之后,我们只需要构建出相应的Request,然后调用RequestQueue的add()方法将Request传入就可以完成网络请求操作了,下面我们分析一下add()方法的内部的逻辑

     /**
         * Adds a Request to the dispatch queue.
         * @param request The request to service
         * @return The passed-in request
         */
        public <T> Request<T> add(Request<T> request) {
            // Tag the request as belonging to this queue and add it to the set of current requests.
            request.setRequestQueue(this);
            synchronized (mCurrentRequests) {
                mCurrentRequests.add(request);
            }
    
            // Process requests in the order they are added.
            request.setSequence(getSequenceNumber());
            request.addMarker("add-to-queue");
    
            // If the request is uncacheable, skip the cache queue and go straight to the network.
            if (!request.shouldCache()) {  //判断当前的请求是否可以缓存
                mNetworkQueue.add(request);  //如果不能缓存则直接将这条请求加入网络请求队列
                return request;
            }
    
            // Insert request into stage if there's already a request with the same cache key in flight.
            synchronized (mWaitingRequests) {
                String cacheKey = request.getCacheKey();
                if (mWaitingRequests.containsKey(cacheKey)) {
                    // There is already a request in flight. Queue up.
                    Queue<Request<?>> stagedRequests = mWaitingRequests.get(cacheKey);
                    if (stagedRequests == null) {
                        stagedRequests = new LinkedList<Request<?>>();
                    }
                    stagedRequests.add(request);
                    mWaitingRequests.put(cacheKey, stagedRequests);
                    if (VolleyLog.DEBUG) {
                        VolleyLog.v("Request for cacheKey=%s is in flight, putting on hold.", cacheKey);
                    }
                } else {
                    // Insert 'null' queue for this cacheKey, indicating there is now a request in
                    // flight.
                    mWaitingRequests.put(cacheKey, null);
                    mCacheQueue.add(request);  //可以缓存的话则在将这条请求加入缓存队列
                }
                return request;
            }
        }
    

    可以看到,开始的时候会判断当前的请求是否可以缓存,如果不能缓存则直接将这条请求加入网络请求队列,可以缓存的话则将这条请求加入缓存队列。在默认情况下,每条请求都是可以缓存的,当然我们也可以调用Request的setShouldCache(false)方法来改变这一默认行为。
    既然默认每条请求都是可以缓存的,自然就被添加到了缓存队列中,于是一直在后台等待的缓存线程就要开始运行起来了,我们看下CacheDispatcher中的run()方法,代码如下所示:

    public class CacheDispatcher extends Thread {
        ......  //省略代码
        @Override
        public void run() {
            if (DEBUG) VolleyLog.v("start new dispatcher");
            Process.setThreadPriority(Process.THREAD_PRIORITY_BACKGROUND);
    
            // Make a blocking call to initialize the cache.
            mCache.initialize();
    
            while (true) {   //死循环
                try {
                    // Get a request from the cache triage queue, blocking until
                    // at least one is available.
                    final Request<?> request = mCacheQueue.take();
                    request.addMarker("cache-queue-take");
    
                    // If the request has been canceled, don't bother dispatching it.
                    if (request.isCanceled()) {
                        request.finish("cache-discard-canceled");
                        continue;
                    }
    
                    // Attempt to retrieve this item from cache.
                    Cache.Entry entry = mCache.get(request.getCacheKey());  //从缓存当中取出响应结果
                    if (entry == null) {  //如何为空的话则把这条请求加入到网络请求队列中
                        request.addMarker("cache-miss");
                        // Cache miss; send off to the network dispatcher.
                        mNetworkQueue.put(request);
                        continue;
                    }
    
                    // If it is completely expired, just send it to the network.
                    if (entry.isExpired()) {  //如果不为空的但该缓存已过期,则同样把这条请求加入到网络请求队列中
                        request.addMarker("cache-hit-expired");
                        request.setCacheEntry(entry);
                        mNetworkQueue.put(request);
                        continue;
                    }
    
                    // We have a cache hit; parse its data for delivery back to the request.
                    request.addMarker("cache-hit");
                    Response<?> response = request.parseNetworkResponse(
                            new NetworkResponse(entry.data, entry.responseHeaders));   //对数据进行解析
                    request.addMarker("cache-hit-parsed"); 
    
                    if (!entry.refreshNeeded()) {
                        // Completely unexpired cache hit. Just deliver the response.
                        mDelivery.postResponse(request, response);
                    } else {
                        // Soft-expired cache hit. We can deliver the cached response,
                        // but we need to also send the request to the network for
                        // refreshing.
                        request.addMarker("cache-hit-refresh-needed");
                        request.setCacheEntry(entry);
    
                        // Mark the response as intermediate.
                        response.intermediate = true;
    
                        // Post the intermediate response back to the user and have
                        // the delivery then forward the request along to the network.
                        mDelivery.postResponse(request, response, new Runnable() {
                            @Override
                            public void run() {
                                try {
                                    mNetworkQueue.put(request);
                                } catch (InterruptedException e) {
                                    // Not much we can do about this.
                                }
                            }
                        });
                    }
    
                } catch (InterruptedException e) {
                    // We may have been interrupted because it was time to quit.
                    if (mQuit) {
                        return;
                    }
                    continue;
                }
            }
        }
    }
    

    可以看到一个while(true)循环,说明缓存线程始终是在运行的,接着会尝试从缓存当中取出响应结果,如何为空的话则把这条请求加入到网络请求队列中,如果不为空的话再判断该缓存是否已过期,如果已经过期了则同样把这条请求加入到网络请求队列中,否则就认为不需要重发网络请求,直接使用缓存中的数据即可。之后会调用Request的parseNetworkResponse()方法来对数据进行解析,再往后就是将解析出来的数据进行回调了,这部分代码的逻辑和NetworkDispatcher后半部分的逻辑是基本相同的,那么我们等下合并在一起看就好了,先来看一下NetworkDispatcher中是怎么处理网络请求队列的,代码如下所示:

    public class NetworkDispatcher extends Thread {
        .......//省略代码
        @Override
        public void run() {
            Process.setThreadPriority(Process.THREAD_PRIORITY_BACKGROUND);
            while (true) {  //死循环
                long startTimeMs = SystemClock.elapsedRealtime();
                Request<?> request;
                try {
                    // Take a request from the queue.
                    request = mQueue.take();
                } catch (InterruptedException e) {
                    // We may have been interrupted because it was time to quit.
                    if (mQuit) {
                        return;
                    }
                    continue;
                }
    
                try {
                    request.addMarker("network-queue-take");
    
                    // If the request was cancelled already, do not perform the
                    // network request.
                    if (request.isCanceled()) {
                        request.finish("network-discard-cancelled");
                        continue;
                    }
    
                    addTrafficStatsTag(request);
    
                    // Perform the network request.
                    NetworkResponse networkResponse = mNetwork.performRequest(request);  //执行网络请求
                    request.addMarker("network-http-complete");
    
                    // If the server returned 304 AND we delivered a response already,
                    // we're done -- don't deliver a second identical response.
                    if (networkResponse.notModified && request.hasHadResponseDelivered()) {
                        request.finish("not-modified");
                        continue;
                    }
    
                    // Parse the response here on the worker thread.
                    Response<?> response = request.parseNetworkResponse(networkResponse);  //解析响应的网络数据
                    request.addMarker("network-parse-complete");
    
                    // Write to cache if applicable.
                    // TODO: Only update cache metadata instead of entire record for 304s.
                    if (request.shouldCache() && response.cacheEntry != null) {
                        mCache.put(request.getCacheKey(), response.cacheEntry);
                        request.addMarker("network-cache-written");
                    }
    
                    // Post the response back.
                    request.markDelivered();
                    mDelivery.postResponse(request, response);
                } catch (VolleyError volleyError) {
                    volleyError.setNetworkTimeMs(SystemClock.elapsedRealtime() - startTimeMs);
                    parseAndDeliverNetworkError(request, volleyError);
                } catch (Exception e) {
                    VolleyLog.e(e, "Unhandled exception %s", e.toString());
                    VolleyError volleyError = new VolleyError(e);
                    volleyError.setNetworkTimeMs(SystemClock.elapsedRealtime() - startTimeMs);
                    mDelivery.postError(request, volleyError);
                }
            }
        }
    
        private void parseAndDeliverNetworkError(Request<?> request, VolleyError error) {
            error = request.parseNetworkError(error);
            mDelivery.postError(request, error);
        }
    }
    

    同样地,我们看到了类似的while(true)循环,说明网络请求线程也是在不断运行的。在死循环中会调用Network的performRequest()方法来去发送网络请求,而Network是一个接口,我们在上面创建 stack是通过这段代码(Network network = new BasicNetwork(stack);)实现网络请求的,所以这里具体的实现是BasicNetwork,所以我们在BasicNetwork类中查看performRequest()方法,如下所示:

    public class BasicNetwork implements Network {
       .....//省略代码
        @Override
        public NetworkResponse performRequest(Request<?> request) throws VolleyError {
            long requestStart = SystemClock.elapsedRealtime();
            while (true) {
                HttpResponse httpResponse = null;
                byte[] responseContents = null;
                Map<String, String> responseHeaders = Collections.emptyMap();
                try {
                    // Gather headers.
                    Map<String, String> headers = new HashMap<String, String>();
                    addCacheHeaders(headers, request.getCacheEntry());
                    httpResponse = mHttpStack.performRequest(request, headers); //调用了HttpStack的performRequest()方法
                    StatusLine statusLine = httpResponse.getStatusLine();
                    int statusCode = statusLine.getStatusCode();
    
                    responseHeaders = convertHeaders(httpResponse.getAllHeaders());
                    // Handle cache validation.
                    if (statusCode == HttpStatus.SC_NOT_MODIFIED) {
    
                        Entry entry = request.getCacheEntry();
                        if (entry == null) {
                            return new NetworkResponse(HttpStatus.SC_NOT_MODIFIED, null,
                                    responseHeaders, true,
                                    SystemClock.elapsedRealtime() - requestStart);  //组装成一个NetworkResponse对象进行返回
                        }
                        // http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.3.5
                        entry.responseHeaders.putAll(responseHeaders);
                        return new NetworkResponse(HttpStatus.SC_NOT_MODIFIED, entry.data,
                                entry.responseHeaders, true,
                                SystemClock.elapsedRealtime() - requestStart); //组装成一个NetworkResponse对象进行返回
                    }
    
                    // Some responses such as 204s do not have content.  We must check.
                    if (httpResponse.getEntity() != null) {
                      responseContents = entityToBytes(httpResponse.getEntity());
                    } else {
                      // Add 0 byte response as a way of honestly representing a
                      // no-content request.
                      responseContents = new byte[0];
                    }
    
                    // if the request is slow, log it.
                    long requestLifetime = SystemClock.elapsedRealtime() - requestStart;
                    logSlowRequests(requestLifetime, request, responseContents, statusLine);
    
                    if (statusCode < 200 || statusCode > 299) {
                        throw new IOException();
                    }
                    return new NetworkResponse(statusCode, responseContents, responseHeaders, false,
                            SystemClock.elapsedRealtime() - requestStart);
                } catch (SocketTimeoutException e) {
                        ...... //省略代码
                }
            }
        }
    }
    

    这段代码主要是一些网络请求细节方面的东西,需要注意的是调用了HttpStack的performRequest()方法,这里的HttpStack就是在一开始调用newRequestQueue()方法是创建的实例,默认情况下如果系统版本号大于9就创建的HurlStack对象,否则创建HttpClientStack对象。这两个对象的内部实际就是分别使用HttpURLConnection和HttpClient来发送网络请求的,之后会将服务器返回的数据组装成一个NetworkResponse对象进行返回。

    在NetworkDispatcher中收到了NetworkResponse这个返回值后又会调用Request的parseNetworkResponse()方法来解析NetworkResponse中的数据,以及将数据写入到缓存,这个方法的实现是交给Request的子类来完成的,因为不同种类的Request解析的方式也肯定不同。如果想自定义Request的方式,其中parseNetworkResponse()这个方法就是必须要重写的
    在解析完了NetworkResponse中的数据之后,又会调用ExecutorDelivery的postResponse()方法来回调解析出的数据,代码如下所示:

    1.在NetworkDispatcher类中
           private final ResponseDelivery mDelivery;
     // Parse the response here on the worker thread.
                    Response<?> response = request.parseNetworkResponse(networkResponse);   //解析数据
                    request.addMarker("network-parse-complete");
    
                    mDelivery.postResponse(request, response);  //回调解析出的数据,具体实现在下面代码中
    
    2.在ExecutorDelivery类中回调解析出来的数据
    public class ExecutorDelivery implements ResponseDelivery {
        @Override
        public void postResponse(Request<?> request, Response<?> response) {
            postResponse(request, response, null);
        }
    
        @Override
        public void postResponse(Request<?> request, Response<?> response, Runnable runnable) {
            request.markDelivered();
            request.addMarker("post-response");
            mResponsePoster.execute(new ResponseDeliveryRunnable(request, response, runnable));
        }
    }
    

    其中,在mResponsePoster的execute()方法中传入了一个ResponseDeliveryRunnable对象,这样就可以保证该对象中的run()方法就是在主线程当中运行的了,我们看下run()方法中的代码是什么样的:

    private class ResponseDeliveryRunnable implements Runnable {
            @SuppressWarnings("unchecked")
            @Override
            public void run() {
                // If this request has canceled, finish it and don't deliver.
                if (mRequest.isCanceled()) {
                    mRequest.finish("canceled-at-delivery");
                    return;
                }
    
                // Deliver a normal response or error, depending.
                if (mResponse.isSuccess()) {
                    mRequest.deliverResponse(mResponse.result);
                } else {
                    mRequest.deliverError(mResponse.error);
                }
    
                // If this is an intermediate response, add a marker, otherwise we're done
                // and the request can be finished.
                if (mResponse.intermediate) {
                    mRequest.addMarker("intermediate-response");
                } else {
                    mRequest.finish("done");
                }
    
                // If we have been provided a post-delivery runnable, run it.
                if (mRunnable != null) {
                    mRunnable.run();
                }
           }
    

    分析重点代码即可,主要看Request的deliverResponse()方法这个方法也是我们在自定义Request时需要重写的另外一个方法,每一条网络请求的响应都是回调到这个方法中,最后我们再在这个方法中将响应的数据回调到Response.Listener的onResponse()方法中就可以了。

    5.Retrofit.

    Square公司产品,内部封装了OKhttp, 解决了网络数据解析和线程切换的问题。

    相关文章

      网友评论

        本文标题:网络库简单总结

        本文链接:https://www.haomeiwen.com/subject/urmxrxtx.html