iOS基础全面分析之二(RunLoop全面分析)

作者: struggle3g | 来源:发表于2019-06-29 02:15 被阅读40次

    iOS基础全面分析之一(KVC全面分析)
    iOS基础全面分析之二(RunLoop全面分析)
    iOS基础全面分析之三(KVO全面分析)

    RunLoop全面分析

    什么是RunLoop?

    字面的意思:

    • 运行循环,程序运行过程中循环的处理事情

    iOS中实际含义:

    • 实际上是一个对象,这个对象提供一个入口函数,执行这个入口函数后,程序会进入一个while循环,循环的处理一些事情

    例如:在main.m文件中如下代码:

    int main(int argc, char * argv[]) {
        @autoreleasepool {
            id ret = UIApplicationMain(argc, argv, nil, NSStringFromClass([AppDelegate class]));
            NSLog(@"hello");
            return 0;
        }
    }
    

    上述代码运行时打印不到hello的,因为程序会一直在UIApplicationMain()这个RunLoop的运行循环中。

    RunLoop在开发中的作用?

    基本作用

    1. 保持程序的持续运行
    2. 处理App中的各种事件(触摸、定时器、PerformSelector)
    3. 节省CPU资源、提高程序性能,该工作的时候工作,该休息的时候休息

    RunLoop与线程的关系

    CFRunLoop 是基于 pthread 来管理的,开源代码的逻辑大概是下面这样:

    /// 全局的Dictionary,key 是 pthread_t, value 是 CFRunLoopRef
    static CFMutableDictionaryRef loopsDic;
    /// 访问 loopsDic 时的锁
    static CFSpinLock_t loopsLock;
     
    /// 获取一个 pthread 对应的 RunLoop。
    CFRunLoopRef _CFRunLoopGet(pthread_t thread) {
        OSSpinLockLock(&loopsLock);
        
        if (!loopsDic) {
            // 第一次进入时,初始化全局Dic,并先为主线程创建一个 RunLoop。
            loopsDic = CFDictionaryCreateMutable();
            CFRunLoopRef mainLoop = _CFRunLoopCreate();
            CFDictionarySetValue(loopsDic, pthread_main_thread_np(), mainLoop);
        }
        
        /// 直接从 Dictionary 里获取。
        CFRunLoopRef loop = CFDictionaryGetValue(loopsDic, thread));
        
        if (!loop) {
            /// 取不到时,创建一个
            loop = _CFRunLoopCreate();
            CFDictionarySetValue(loopsDic, thread, loop);
            /// 注册一个回调,当线程销毁时,顺便也销毁其对应的 RunLoop。
            _CFSetTSD(..., thread, loop, __CFFinalizeRunLoop);
        }
        
        OSSpinLockUnLock(&loopsLock);
        return loop;
    }
     
    CFRunLoopRef CFRunLoopGetMain() {
        return _CFRunLoopGet(pthread_main_thread_np());
    }
     
    CFRunLoopRef CFRunLoopGetCurrent() {
        return _CFRunLoopGet(pthread_self());
    }
    

    从上面代码可以看出,线程和RunLoop是一一对应的,其关系是保存在一个全局Dictionary中:

    1. 线程刚刚创建时并没有RunLoop,如果你不主动获取,那么它就不会创建。
    2. 线程的Runloop的创建是发生在第一次获取时。
    3. RunLoop的销毁时发生在线程结束时。
    4. 你只能在一个线程的内部获取RunLoop(主线程除外)

    RunLoop对外的对象和接口

    iOS的RunLoop的对象

    1. NSRunLoop Foundation框架 基于CFRunLoopRef的封装
    2. CFRunLoopRef Core Foundation框架

    CFRunLoopRef的相关核心对象

    1. CFRunLoopRef
      • RunLoop的对象
    2. CFRunLoopModeRef
      • RunLoop的模式
    3. CFRunLoopSourceRef
      • RunLoop的源
    4. CFRunLoopTimerRef
      • RunLoop时间
    5. CFRunLoopobserverRef
      • RunLoop的观察者

    CFRunLoopRef核心对象的关系

    其中CFRunLoopModeRef并没有对外包喽,只是通过CFRunLoopRef的接口进行了封装,它们的关系如下

    Runloop核心对象关系.png

    CFRunLoopRef核心对象的详解

    一个 RunLoop 包含若干个 Mode,每个 Mode 又包含若干个 Source/Timer/Observer。每次调用 RunLoop 的主函数时,只能指定其中一个 Mode,这个Mode被称作 CurrentMode。如果需要切换 Mode,只能退出 Loop,再重新指定一个 Mode 进入。这样做主要是为了分隔开不同组的 Source/Timer/Observer,让其互不影响。

    CFRunLoopSourceRef 是事件产生的地方。Source有两个版本:Source0 和 Source1:

    • Source0 只包含了一个回调(函数指针),它并不能主动触发事件。使用时,你需要先调用 CFRunLoopSourceSignal(source),将这个 Source 标记为待处理,然后手动调用 CFRunLoopWakeUp(runloop) 来唤醒 RunLoop,让其处理这个事件。
    • Source1 包含了一个 mach_port 和一个回调(函数指针),被用于通过内核和其他线程相互发送消息。这种 Source 能主动唤醒 RunLoop 的线程,其原理在下面会讲到。

    CFRunLoopTimerRef 是基于时间的触发器,它和 NSTimer 是toll-free bridged 的,可以混用。其包含一个时间长度和一个回调(函数指针)。当其加入到 RunLoop 时,RunLoop会注册对应的时间点,当时间点到时,RunLoop会被唤醒以执行那个回调。

    CFRunLoopObserverRef 是观察者,每个 Observer 都包含了一个回调(函数指针),当 RunLoop 的状态发生变化时,观察者就能通过回调接受到这个变化。可以观测的时间点有以下几个:

    typedef CF_OPTIONS(CFOptionFlags, CFRunLoopActivity) {
        kCFRunLoopEntry         = (1UL << 0), // 即将进入Loop
        kCFRunLoopBeforeTimers  = (1UL << 1), // 即将处理 Timer
        kCFRunLoopBeforeSources = (1UL << 2), // 即将处理 Source
        kCFRunLoopBeforeWaiting = (1UL << 5), // 即将进入休眠
        kCFRunLoopAfterWaiting  = (1UL << 6), // 刚从休眠中唤醒
        kCFRunLoopExit          = (1UL << 7), // 即将退出Loop
    };
    

    上面的 Source/Timer/Observer 被统称为 mode item,一个 item 可以被同时加入多个 mode。但一个 item 被重复加入同一个 mode 时是不会有效果的。如果一个 mode 中一个 item 都没有,则 RunLoop 会直接退出,不进入循环。

    CFRunLoop

    CFRunLoop 的结构

    struct __CFRunLoop {
        CFMutableSetRef _commonModes;     // 一个Mode通过将其 ModeName 添加到 RunLoop 的 “commonModes” 中
        CFMutableSetRef _commonModeItems; // Set<Source/Observer/Timer>
        CFRunLoopModeRef _currentMode;    // 当前mode
        CFMutableSetRef _modes;           // Set
        ...
    };
    

    CommonModes:

    CommonModes表示:一个 Mode 可以将自己标记为”Common”属性(通过将其 ModeName 添加到 RunLoop 的 “commonModes” 中)。每当 RunLoop 的内容发生变化时,RunLoop 都会自动将 _commonModeItems 里的 Source/Observer/Timer 同步到具有 “Common” 标记的所有Mode里。

    举个例子:

    在主线程有两个 mode:kCFRunLoopDefaultMode 和 UITrackingRunLoopMode。
    这两个 Mode 都已经被标记为”Common”属性。DefaultMode 是 App 平时所处的状态,TrackingRunLoopMode 是追踪 ScrollView 滑动时的状态。当你创建一个 Timer 并加到 DefaultMode 时,Timer 会得到重复回调,但此时滑动一个TableView时,RunLoop 会将 mode 切换为 TrackingRunLoopMode,这时 Timer 就不会被回调,并且也不会影响到滑动操作。

    有时你需要一个 Timer,在两个 Mode 中都能得到回调,一种办法就是将这个 Timer 分别加入这两个 Mode。还有一种方式,就是将 Timer 加入到顶层的 RunLoop 的 “commonModeItems” 中。”commonModeItems” 被 RunLoop 自动更新到所有具有”Common”属性的 Mode 里去。

    CFRunLoop对外暴露的管理 Mode 接口只有下面2个:

    CFRunLoopAddCommonMode(CFRunLoopRef runloop, CFStringRef modeName);
    CFRunLoopRunInMode(CFStringRef modeName, ...);
    

    你只能通过 mode name 来操作内部的 mode,当你传入一个新的 mode name 但 RunLoop 内部没有对应 mode 时,RunLoop会自动帮你创建对应的 CFRunLoopModeRef。对于一个 RunLoop 来说,其内部的 mode 只能增加不能删除。

    苹果公开提供的 Mode 有两个:kCFRunLoopDefaultMode (NSDefaultRunLoopMode) 和 UITrackingRunLoopMode,你可以用这两个 Mode Name 来操作其对应的 Mode。

    同时苹果还提供了一个操作 Common 标记的字符串:kCFRunLoopCommonModes (NSRunLoopCommonModes),你可以用这个字符串来操作 Common Items,或标记一个 Mode 为 “Common”。使用时注意区分这个字符串和其他 mode name。

    _commonModeItems:

    这里面主要包括了<Source/Observer/Timer>这些源信息

    _currentMode

    当前RunLoop使用的mode

    _modes

    这个时RunLoop中注册了哪些mode。

    CFRunLoopMode

    CFRunLoopMode 的结构

    struct __CFRunLoopMode {
        CFStringRef _name;            // Mode Name, 例如 @"kCFRunLoopDefaultMode"
        CFMutableSetRef _sources0;    // Set
        CFMutableSetRef _sources1;    // Set
        CFMutableArrayRef _observers; // Array
        CFMutableArrayRef _timers;    // Array
        ...
    };
    

    _name

    RunLoopMode的名称

    _sources0

    • 触摸事件
    • 自定义输入源
    • perFormSelector:onThread:
    CFRunLoopSourceContext context = {
        0,
        NULL,
        NULL,
        NULL,
        NULL,
        NULL,
        NULL,
        schedule,
        cancel,
        perform
    };
        
    CFRunLoopSourceRef source0 = CFRunLoopSourceCreate(CFAllocatorGetDefault(), 0, &context);
    CFRunLoopAddSource(CFRunLoopGetCurrent(), source0, kCFRunLoopDefaultMode);
        
    //
    //    CFRunLoopSourceSignal(source0);  //触发源 会调用perform
    //    CFRunLoopWakeUp(CFRunLoopGetCurrent());  //唤醒线程
        
    //删除源 会调用cancel
    //    CFRunLoopRemoveSource(CFRunLoopGetCurrent(), source0, kCFRunLoopDefaultMode);
    CFRelease(source0);
    
    void schedule(void *info, CFRunLoopRef rl, CFRunLoopMode mode) {
        NSLog(@"%s", __func__);
    }
    
    void cancel(void *info, CFRunLoopRef rl, CFRunLoopMode mode) {
        NSLog(@"%s", __func__);
    }
    
    void perform(void *info) {
        NSLog(@"%s", __func__);
    }
    

    自定义源,在runloop添加这个源的时候会调用scheduleCFRunLoopSourceSignal触发会调用performCFRunLoopRemoveSource删除会调用cancel

    _sources1

    负责App内部事件,由App负责管理触发,例如UITouch事件,Source1除了包含回调指针外包含一个mach port,和Source0需要手动触发不同,Source1可以监听系统端口和其他线程相互发送消息,它能够主动唤醒RunLoop(由操作系统内核进行管理,例如CFMessagePort消息)。

    • 端口(Port)

    线程间通信的代码:

    @interface ViewController () <NSPortDelegate>
    @property (nonatomic, strong) NSPort* subThreadPort;
    @property (nonatomic, strong) NSPort* mainThreadPort;
    @end
    
    @implementation ViewController
    
    - (void)viewDidLoad {
        [super viewDidLoad];
        
        self.mainThreadPort = [NSPort port];
        self.mainThreadPort.delegate = self;
        [[NSRunLoop currentRunLoop] addPort:self.mainThreadPort forMode:NSDefaultRunLoopMode];
        [self task];
    }
    
    - (void) task {
        NSThread* thread = [[NSThread alloc] initWithBlock:^{
            self.subThreadPort = [NSPort port];
            self.subThreadPort.delegate = self;
            
            [[NSRunLoop currentRunLoop] addPort:self.subThreadPort forMode:NSDefaultRunLoopMode];
            [[NSRunLoop currentRunLoop] run];
        }];
        [thread setName:@"子线程"];
        [thread start];
    }
    
    - (void)handlePortMessage:(id)message {
        NSLog(@"%@", [NSThread currentThread]);
        
        if (![[NSThread currentThread] isMainThread]) {
            NSMutableArray* sendComponents = [NSMutableArray array];
            NSData* data = [@"world" dataUsingEncoding:NSUTF8StringEncoding];
            [sendComponents addObject:data];
            [self.mainThreadPort sendBeforeDate:[NSDate date] components:sendComponents from:self.subThreadPort reserved:0];
            return;
        }
        sleep(2);
        NSMutableArray* components = [message valueForKey:@"components"];
        
        if ([components count] > 0) {
            NSData* data = [components objectAtIndex:0];
            NSString* str = [[NSString alloc] initWithData:data encoding:NSUTF8StringEncoding];
            NSLog(@"%@", str);
        }
    
    }
    
    - (void)touchesBegan:(NSSet<UITouch *> *)touches withEvent:(UIEvent *)event {
        
        NSMutableArray* components = [NSMutableArray array];
        NSData* data = [@"hello" dataUsingEncoding:NSUTF8StringEncoding];
        [components addObject:data];
        
        [self.subThreadPort sendBeforeDate:[NSDate date] components:components from:self.mainThreadPort reserved:0];
    }
    
    @end
    
    

    _observers

    struct __CFRunLoopObserver {
        CFRuntimeBase _base;
        pthread_mutex_t _lock;
        CFRunLoopRef _runLoop;
        CFIndex _rlCount;
        CFOptionFlags _activities;      /* immutable */
        CFIndex _order;         /* immutable */
        CFRunLoopObserverCallBack _callout; /* immutable */
        CFRunLoopObserverContext _context;  /* immutable, except invalidation */
    };
    

    它相当于消息循环中的一个监听器,随时通知外部当前RunLoop的运行状态(它包含一个函数指针callout将当前状态及时告诉观察者)。具体的Observer状态如下:

    /* Run Loop Observer Activities */
    typedef CF_OPTIONS(CFOptionFlags, CFRunLoopActivity) {
        kCFRunLoopEntry = (1UL << 0), // 进入RunLoop 
        kCFRunLoopBeforeTimers = (1UL << 1), // 即将开始Timer处理
        kCFRunLoopBeforeSources = (1UL << 2), // 即将开始Source处理
        kCFRunLoopBeforeWaiting = (1UL << 5), // 即将进入休眠
        kCFRunLoopAfterWaiting = (1UL << 6), //从休眠状态唤醒
        kCFRunLoopExit = (1UL << 7), //退出RunLoop
        kCFRunLoopAllActivities = 0x0FFFFFFFU
    };
    

    代码实现

    - (void) observerTest {
        
        CFRunLoopObserverRef observer = CFRunLoopObserverCreateWithHandler(kCFAllocatorDefault, kCFRunLoopAllActivities, YES, 0, ^(CFRunLoopObserverRef observer, CFRunLoopActivity activity) {
            NSLog(@"%lu", activity);
        });
        
        CFRunLoopAddObserver(CFRunLoopGetCurrent(), observer, kCFRunLoopDefaultMode);
        
    }
    

    _timers

    • NSTimer
    • performSelector:withObject:afterDelay

    timers的代码实现:

    - (void) timerTest {
        
        
       CFRunLoopTimerRef timer =  CFRunLoopTimerCreateWithHandler(kCFAllocatorDefault, 0, 1, 0, 0, ^(CFRunLoopTimerRef timer) {
           NSLog(@"%s", __func__);
        });
        
        CFRunLoopAddTimer(CFRunLoopGetCurrent(), timer, kCFRunLoopDefaultMode);
    }
    

    RunLoop的一些回调

    // main  dispatch queue
    __CFRUNLOOP_IS_SERVICING_THE_MAIN_DISPATCH_QUEUE__
    
    // __CFRunLoopDoObservers
    __CFRUNLOOP_IS_CALLING_OUT_TO_AN_OBSERVER_CALLBACK_FUNCTION__
    
    // __CFRunLoopDoBlocks
    __CFRUNLOOP_IS_CALLING_OUT_TO_A_BLOCK__
    
    // __CFRunLoopDoSources0
    __CFRUNLOOP_IS_CALLING_OUT_TO_A_SOURCE0_PERFORM_FUNCTION__
    
    // __CFRunLoopDoSource1
    __CFRUNLOOP_IS_CALLING_OUT_TO_A_SOURCE1_PERFORM_FUNCTION__
    
    // __CFRunLoopDoTimers
    __CFRUNLOOP_IS_CALLING_OUT_TO_A_TIMER_CALLBACK_FUNCTION__
    
    

    RunLoop 的内部逻辑

    RunLoop循环.png

    其内部代码整理如下:

    /// 用DefaultMode启动
    void CFRunLoopRun(void) {
        CFRunLoopRunSpecific(CFRunLoopGetCurrent(), kCFRunLoopDefaultMode, 1.0e10, false);
    }
     
    /// 用指定的Mode启动,允许设置RunLoop超时时间
    int CFRunLoopRunInMode(CFStringRef modeName, CFTimeInterval seconds, Boolean stopAfterHandle) {
        return CFRunLoopRunSpecific(CFRunLoopGetCurrent(), modeName, seconds, returnAfterSourceHandled);
    }
     
    /// RunLoop的实现
    int CFRunLoopRunSpecific(runloop, modeName, seconds, stopAfterHandle) {
        
        /// 首先根据modeName找到对应mode
        CFRunLoopModeRef currentMode = __CFRunLoopFindMode(runloop, modeName, false);
        /// 如果mode里没有source/timer/observer, 直接返回。
        if (__CFRunLoopModeIsEmpty(currentMode)) return;
        
        /// 1. 通知 Observers: RunLoop 即将进入 loop。
        __CFRunLoopDoObservers(runloop, currentMode, kCFRunLoopEntry);
        
        /// 内部函数,进入loop
        __CFRunLoopRun(runloop, currentMode, seconds, returnAfterSourceHandled) {
            
            Boolean sourceHandledThisLoop = NO;
            int retVal = 0;
            do {
     
                /// 2. 通知 Observers: RunLoop 即将触发 Timer 回调。
                __CFRunLoopDoObservers(runloop, currentMode, kCFRunLoopBeforeTimers);
                /// 3. 通知 Observers: RunLoop 即将触发 Source0 (非port) 回调。
                __CFRunLoopDoObservers(runloop, currentMode, kCFRunLoopBeforeSources);
                /// 执行被加入的block
                __CFRunLoopDoBlocks(runloop, currentMode);
                
                /// 4. RunLoop 触发 Source0 (非port) 回调。
                sourceHandledThisLoop = __CFRunLoopDoSources0(runloop, currentMode, stopAfterHandle);
                /// 执行被加入的block
                __CFRunLoopDoBlocks(runloop, currentMode);
     
                /// 5. 如果有 Source1 (基于port) 处于 ready 状态,直接处理这个 Source1 然后跳转去处理消息。
                if (__Source0DidDispatchPortLastTime) {
                    Boolean hasMsg = __CFRunLoopServiceMachPort(dispatchPort, &msg)
                    if (hasMsg) goto handle_msg;
                }
                
                /// 通知 Observers: RunLoop 的线程即将进入休眠(sleep)。
                if (!sourceHandledThisLoop) {
                    __CFRunLoopDoObservers(runloop, currentMode, kCFRunLoopBeforeWaiting);
                }
                
                /// 7. 调用 mach_msg 等待接受 mach_port 的消息。线程将进入休眠, 直到被下面某一个事件唤醒。
                /// • 一个基于 port 的Source 的事件。
                /// • 一个 Timer 到时间了
                /// • RunLoop 自身的超时时间到了
                /// • 被其他什么调用者手动唤醒
                __CFRunLoopServiceMachPort(waitSet, &msg, sizeof(msg_buffer), &livePort) {
                    mach_msg(msg, MACH_RCV_MSG, port); // thread wait for receive msg
                }
     
                /// 8. 通知 Observers: RunLoop 的线程刚刚被唤醒了。
                __CFRunLoopDoObservers(runloop, currentMode, kCFRunLoopAfterWaiting);
                
                /// 收到消息,处理消息。
                handle_msg:
     
                /// 9.1 如果一个 Timer 到时间了,触发这个Timer的回调。
                if (msg_is_timer) {
                    __CFRunLoopDoTimers(runloop, currentMode, mach_absolute_time())
                } 
     
                /// 9.2 如果有dispatch到main_queue的block,执行block。
                else if (msg_is_dispatch) {
                    __CFRUNLOOP_IS_SERVICING_THE_MAIN_DISPATCH_QUEUE__(msg);
                } 
     
                /// 9.3 如果一个 Source1 (基于port) 发出事件了,处理这个事件
                else {
                    CFRunLoopSourceRef source1 = __CFRunLoopModeFindSourceForMachPort(runloop, currentMode, livePort);
                    sourceHandledThisLoop = __CFRunLoopDoSource1(runloop, currentMode, source1, msg);
                    if (sourceHandledThisLoop) {
                        mach_msg(reply, MACH_SEND_MSG, reply);
                    }
                }
                
                /// 执行加入到Loop的block
                __CFRunLoopDoBlocks(runloop, currentMode);
                
     
                if (sourceHandledThisLoop && stopAfterHandle) {
                    /// 进入loop时参数说处理完事件就返回。
                    retVal = kCFRunLoopRunHandledSource;
                } else if (timeout) {
                    /// 超出传入参数标记的超时时间了
                    retVal = kCFRunLoopRunTimedOut;
                } else if (__CFRunLoopIsStopped(runloop)) {
                    /// 被外部调用者强制停止了
                    retVal = kCFRunLoopRunStopped;
                } else if (__CFRunLoopModeIsEmpty(runloop, currentMode)) {
                    /// source/timer/observer一个都没有了
                    retVal = kCFRunLoopRunFinished;
                }
                
                /// 如果没超时,mode里没空,loop也没被停止,那继续loop。
            } while (retVal == 0);
        }
        
        /// 10. 通知 Observers: RunLoop 即将退出。
        __CFRunLoopDoObservers(rl, currentMode, kCFRunLoopExit);
    }
    
    

    可以看到,实际上 RunLoop 就是这样一个函数,其内部是一个 do-while 循环。当你调用 CFRunLoopRun() 时,线程就会一直停留在这个循环里;直到超时或被手动停止,该函数才会返回。

    RunLoop 的一个思维导图

    RunLoop.png

    RunLoop 的底层实现

    为了实现消息的发送和接收,mach_msg() 函数实际上是调用了一个 Mach 陷阱 (trap),即函数mach_msg_trap(),陷阱这个概念在 Mach 中等同于系统调用。当你在用户态调用 mach_msg_trap() 时会触发陷阱机制,切换到内核态;内核态中内核实现的 mach_msg() 函数会完成实际的工作,如下图:

    mach

    苹果用RunLoop实现的功能

    首先我们可以看一下App启动后的RunLoop的状态

    CFRunLoop {
        current mode = kCFRunLoopDefaultMode
        common modes = {
            UITrackingRunLoopMode
            kCFRunLoopDefaultMode
        }
     
        common mode items = {
     
            // source0 (manual)
            CFRunLoopSource {order =-1, {
                callout = _UIApplicationHandleEventQueue}}
            CFRunLoopSource {order =-1, {
                callout = PurpleEventSignalCallback }}
            CFRunLoopSource {order = 0, {
                callout = FBSSerialQueueRunLoopSourceHandler}}
     
            // source1 (mach port)
            CFRunLoopSource {order = 0,  {port = 17923}}
            CFRunLoopSource {order = 0,  {port = 12039}}
            CFRunLoopSource {order = 0,  {port = 16647}}
            CFRunLoopSource {order =-1, {
                callout = PurpleEventCallback}}
            CFRunLoopSource {order = 0, {port = 2407,
                callout = _ZL20notify_port_callbackP12__CFMachPortPvlS1_}}
            CFRunLoopSource {order = 0, {port = 1c03,
                callout = __IOHIDEventSystemClientAvailabilityCallback}}
            CFRunLoopSource {order = 0, {port = 1b03,
                callout = __IOHIDEventSystemClientQueueCallback}}
            CFRunLoopSource {order = 1, {port = 1903,
                callout = __IOMIGMachPortPortCallback}}
     
            // Ovserver
            CFRunLoopObserver {order = -2147483647, activities = 0x1, // Entry
                callout = _wrapRunLoopWithAutoreleasePoolHandler}
            CFRunLoopObserver {order = 0, activities = 0x20,          // BeforeWaiting
                callout = _UIGestureRecognizerUpdateObserver}
            CFRunLoopObserver {order = 1999000, activities = 0xa0,    // BeforeWaiting | Exit
                callout = _afterCACommitHandler}
            CFRunLoopObserver {order = 2000000, activities = 0xa0,    // BeforeWaiting | Exit
                callout = _ZN2CA11Transaction17observer_callbackEP19__CFRunLoopObservermPv}
            CFRunLoopObserver {order = 2147483647, activities = 0xa0, // BeforeWaiting | Exit
                callout = _wrapRunLoopWithAutoreleasePoolHandler}
     
            // Timer
            CFRunLoopTimer {firing = No, interval = 3.1536e+09, tolerance = 0,
                next fire date = 453098071 (-4421.76019 @ 96223387169499),
                callout = _ZN2CAL14timer_callbackEP16__CFRunLoopTimerPv (QuartzCore.framework)}
        },
     
        modes = {
            CFRunLoopMode  {
                sources0 =  { /* same as 'common mode items' */ },
                sources1 =  { /* same as 'common mode items' */ },
                observers = { /* same as 'common mode items' */ },
                timers =    { /* same as 'common mode items' */ },
            },
     
            CFRunLoopMode  {
                sources0 =  { /* same as 'common mode items' */ },
                sources1 =  { /* same as 'common mode items' */ },
                observers = { /* same as 'common mode items' */ },
                timers =    { /* same as 'common mode items' */ },
            },
     
            CFRunLoopMode  {
                sources0 = {
                    CFRunLoopSource {order = 0, {
                        callout = FBSSerialQueueRunLoopSourceHandler}}
                },
                sources1 = (null),
                observers = {
                    CFRunLoopObserver >{activities = 0xa0, order = 2000000,
                        callout = _ZN2CA11Transaction17observer_callbackEP19__CFRunLoopObservermPv}
                )},
                timers = (null),
            },
     
            CFRunLoopMode  {
                sources0 = {
                    CFRunLoopSource {order = -1, {
                        callout = PurpleEventSignalCallback}}
                },
                sources1 = {
                    CFRunLoopSource {order = -1, {
                        callout = PurpleEventCallback}}
                },
                observers = (null),
                timers = (null),
            },
            
            CFRunLoopMode  {
                sources0 = (null),
                sources1 = (null),
                observers = (null),
                timers = (null),
            }
        }
    }
    
    

    可以看到,系统默认注册了5个Mode:

    1. kCFRunLoopDefaultMode: App的默认 Mode,通常主线程是在这个 Mode 下运行的。
    2. UITrackingRunLoopMode: 界面跟踪 Mode,用于 ScrollView 追踪触摸滑动,保证界面滑动时不受其他 Mode 影响。
    3. UIInitializationRunLoopMode: 在刚启动 App 时第进入的第一个 Mode,启动完成后就不再使用。
    4. GSEventReceiveRunLoopMode: 接受系统事件的内部 Mode,通常用不到。
    5. kCFRunLoopCommonModes: 这是一个占位的 Mode,没有实际作用。
      • kCFRunLoopCommonModes(NSRunLoopCommonModes),其实这个并不是某种具体的Mode,而是一种模式组合,在iOS系统中默认包含了
        NSDefaultRunLoopMode和 UITrackingRunLoopMode(注意:并不是说Runloop会运行在kCFRunLoopCommonModes这种模式下,而是相当于分别注册了 NSDefaultRunLoopMode和 UITrackingRunLoopMode。当然你也可以通过调用CFRunLoopAddCommonMode()方法将自定义Mode放到 kCFRunLoopCommonModes组合)。

    当 RunLoop 进行回调时,一般都是通过一个很长的函数调用出去 (call out), 当你在你的代码中下断点调试时,通常能在调用栈上看到这些函数。下面是这几个函数的整理版本,如果你在调用栈中看到这些长函数名,在这里查找一下就能定位到具体的调用地点了:

    {
        /// 1. 通知Observers,即将进入RunLoop
        /// 此处有Observer会创建AutoreleasePool: _objc_autoreleasePoolPush();
        __CFRUNLOOP_IS_CALLING_OUT_TO_AN_OBSERVER_CALLBACK_FUNCTION__(kCFRunLoopEntry);
        do {
     
            /// 2. 通知 Observers: 即将触发 Timer 回调。
            __CFRUNLOOP_IS_CALLING_OUT_TO_AN_OBSERVER_CALLBACK_FUNCTION__(kCFRunLoopBeforeTimers);
            /// 3. 通知 Observers: 即将触发 Source (非基于port的,Source0) 回调。
            __CFRUNLOOP_IS_CALLING_OUT_TO_AN_OBSERVER_CALLBACK_FUNCTION__(kCFRunLoopBeforeSources);
            __CFRUNLOOP_IS_CALLING_OUT_TO_A_BLOCK__(block);
     
            /// 4. 触发 Source0 (非基于port的) 回调。
            __CFRUNLOOP_IS_CALLING_OUT_TO_A_SOURCE0_PERFORM_FUNCTION__(source0);
            __CFRUNLOOP_IS_CALLING_OUT_TO_A_BLOCK__(block);
     
            /// 6. 通知Observers,即将进入休眠
            /// 此处有Observer释放并新建AutoreleasePool: _objc_autoreleasePoolPop(); _objc_autoreleasePoolPush();
            __CFRUNLOOP_IS_CALLING_OUT_TO_AN_OBSERVER_CALLBACK_FUNCTION__(kCFRunLoopBeforeWaiting);
     
            /// 7. sleep to wait msg.
            mach_msg() -> mach_msg_trap();
            
     
            /// 8. 通知Observers,线程被唤醒
            __CFRUNLOOP_IS_CALLING_OUT_TO_AN_OBSERVER_CALLBACK_FUNCTION__(kCFRunLoopAfterWaiting);
     
            /// 9. 如果是被Timer唤醒的,回调Timer
            __CFRUNLOOP_IS_CALLING_OUT_TO_A_TIMER_CALLBACK_FUNCTION__(timer);
     
            /// 9. 如果是被dispatch唤醒的,执行所有调用 dispatch_async 等方法放入main queue 的 block
            __CFRUNLOOP_IS_SERVICING_THE_MAIN_DISPATCH_QUEUE__(dispatched_block);
     
            /// 9. 如果如果Runloop是被 Source1 (基于port的) 的事件唤醒了,处理这个事件
            __CFRUNLOOP_IS_CALLING_OUT_TO_A_SOURCE1_PERFORM_FUNCTION__(source1);
     
     
        } while (...);
     
        /// 10. 通知Observers,即将退出RunLoop
        /// 此处有Observer释放AutoreleasePool: _objc_autoreleasePoolPop();
        __CFRUNLOOP_IS_CALLING_OUT_TO_AN_OBSERVER_CALLBACK_FUNCTION__(kCFRunLoopExit);
    }
    

    Runloop和AutoreleasePool

    App启动后,苹果在主线程 RunLoop 里注册了两个 Observer,其回调都是 _wrapRunLoopWithAutoreleasePoolHandler()。

    第一个 Observer 监视的事件是 Entry(即将进入Loop),其回调内会调用 _objc_autoreleasePoolPush() 创建自动释放池。其 order 是-2147483647,优先级最高,保证创建释放池发生在其他所有回调之前。

    第二个 Observer 监视了两个事件: BeforeWaiting(准备进入休眠) 时调用_objc_autoreleasePoolPop()_objc_autoreleasePoolPush() 释放旧的池并创建新池;Exit(即将退出Loop) 时调用 _objc_autoreleasePoolPop() 来释放自动释放池。这个 Observer 的 order 是 2147483647,优先级最低,保证其释放池子发生在其他所有回调之后。

    在主线程执行的代码,通常是写在诸如事件回调、Timer回调内的。这些回调会被 RunLoop 创建好的 AutoreleasePool 环绕着,所以不会出现内存泄漏,开发者也不必显示创建 Pool 了。

    RunLoop和事件响应

    苹果注册了一个 Source1 (基于 mach port 的) 用来接收系统事件,其回调函数为 __IOHIDEventSystemClientQueueCallback()。

    当一个硬件事件(触摸/锁屏/摇晃等)发生后,首先由 IOKit.framework 生成一个 IOHIDEvent 事件并由 SpringBoard 接收。这个过程的详细情况可以参考这里。SpringBoard 只接收按键(锁屏/静音等),触摸,加速,接近传感器等几种 Event,随后用 mach port 转发给需要的App进程。随后苹果注册的那个 Source1 就会触发回调,并调用 _UIApplicationHandleEventQueue() 进行应用内部的分发。

    _UIApplicationHandleEventQueue() 会把 IOHIDEvent 处理并包装成 UIEvent 进行处理或分发,其中包括识别 UIGesture/处理屏幕旋转/发送给 UIWindow 等。通常事件比如 UIButton 点击、touchesBegin/Move/End/Cancel 事件都是在这个回调中完成的。

    RunLoop和手势识别

    当上面的 _UIApplicationHandleEventQueue() 识别了一个手势时,其首先会调用 Cancel 将当前的 touchesBegin/Move/End 系列回调打断。随后系统将对应的 UIGestureRecognizer 标记为待处理。

    苹果注册了一个 Observer 监测 BeforeWaiting (Loop即将进入休眠) 事件,这个Observer的回调函数是 _UIGestureRecognizerUpdateObserver(),其内部会获取所有刚被标记为待处理的 GestureRecognizer,并执行GestureRecognizer的回调。

    当有 UIGestureRecognizer 的变化(创建/销毁/状态改变)时,这个回调都会进行相应处理。

    RunLoop和界面更新

    当在操作 UI 时,比如改变了 Frame、更新了 UIView/CALayer 的层次时,或者手动调用了 UIView/CALayer 的 setNeedsLayout/setNeedsDisplay方法后,这个 UIView/CALayer 就被标记为待处理,并被提交到一个全局的容器去。

    苹果注册了一个 Observer 监听 BeforeWaiting(即将进入休眠) 和 Exit (即将退出Loop) 事件,回调去执行一个很长的函数:
    _ZN2CA11Transaction17observer_callbackEP19__CFRunLoopObservermPv()。这个函数里会遍历所有待处理的 UIView/CAlayer 以执行实际的绘制和调整,并更新 UI 界面。

    这个函数内部的调用栈大概是这样的:

    _ZN2CA11Transaction17observer_callbackEP19__CFRunLoopObservermPv()
        QuartzCore:CA::Transaction::observer_callback:
            CA::Transaction::commit();
                CA::Context::commit_transaction();
                    CA::Layer::layout_and_display_if_needed();
                        CA::Layer::layout_if_needed();
                            [CALayer layoutSublayers];
                                [UIView layoutSubviews];
                        CA::Layer::display_if_needed();
                            [CALayer display];
                                [UIView drawRect];
    

    RunLoop和定时器

    NSTimer 其实就是 CFRunLoopTimerRef,他们之间是 toll-free bridged 的。一个 NSTimer 注册到 RunLoop 后,RunLoop 会为其重复的时间点注册好事件。例如 10:00, 10:10, 10:20 这几个时间点。RunLoop为了节省资源,并不会在非常准确的时间点回调这个Timer。Timer 有个属性叫做 Tolerance (宽容度),标示了当时间点到后,容许有多少最大误差。

    如果某个时间点被错过了,例如执行了一个很长的任务,则那个时间点的回调也会跳过去,不会延后执行。就比如等公交,如果 10:10 时我忙着玩手机错过了那个点的公交,那我只能等 10:20 这一趟了。

    NStimer 不准时的原因

    1. 如果某个时间点被错过了,例如执行了一个很长的任务,则那个时间点的回调也会跳过去,不会延后执行。也就是说RunLoop循环处理的这个时间
    2. Mode变化,也会让定时器不准

    GCDtimer比nstimer准时的原因:

    • 都是源,一个是RunLoop源 一个是GCD源
    • GCDTimer不需要加入mode

    GCDtimer受哪些影响会不准时

    • 在主线程中运行受主线程任务多少的影响,回调给主线程是需要用到RunLoop的
    • 在自线程不会受到影响

    GCDTimer总结

    • GCDTimer精度高
    • GCDTimer主线程执行会受RunLoop影响,在自线程没关系
    • GCDTimer不受模式切换的影响

    CADisplayLink 是一个和屏幕刷新率一致的定时器(但实际实现原理更复杂,和 NSTimer 并不一样,其内部实际是操作了一个 Source)。如果在两次屏幕刷新之间执行了一个长任务,那其中就会有一帧被跳过去(和 NSTimer 相似),造成界面卡顿的感觉。在快速滑动TableView时,即使一帧的卡顿也会让用户有所察觉。

    RunLoop和PerformSelecter

    当调用 NSObject 的 performSelecter:afterDelay: 后,实际上其内部会创建一个 Timer 并添加到当前线程的 RunLoop 中。所以如果当前线程没有 RunLoop,则这个方法会失效。

    当调用 performSelector:onThread: 时,实际上其会创建一个 Timer 加到对应的线程去,同样的,如果对应线程没有 RunLoop 该方法也会失效。

    RunLoop和GCD

    实际上 RunLoop 底层也会用到 GCD 的东西,比如 RunLoop 是用 dispatch_source_t 实现的 Timer(评论中有人提醒,NSTimer 是用了 XNU 内核的 mk_timer,我也仔细调试了一下,发现 NSTimer 确实是由 mk_timer 驱动,而非 GCD 驱动的)。但同时 GCD 提供的某些接口也用到了 RunLoop, 例如 dispatch_async()。

    当调用 dispatch_async(dispatch_get_main_queue(), block) 时,libDispatch 会向主线程的 RunLoop 发送消息,RunLoop会被唤醒,并从消息中取得这个 block,并在回调 CFRUNLOOP_IS_SERVICING_THE_MAIN_DISPATCH_QUEUE() 里执行这个 block。但这个逻辑仅限于 dispatch 到主线程,dispatch 到其他线程仍然是由 libDispatch 处理的。

    RunLoop和网络请求

    iOS 中,关于网络请求的接口自下至上有如下几层:

    CFSocket
    CFNetwork       ->ASIHttpRequest
    NSURLConnection ->AFNetworking
    NSURLSession    ->AFNetworking2, Alamofire
    
    • CFSocket 是最底层的接口,只负责 socket 通信。
    • CFNetwork 是基于 CFSocket 等接口的上层封装,ASIHttpRequest 工作于这一层。
    • NSURLConnection 是基于 CFNetwork 的更高层的封装,提供面向对象的接口,AFNetworking 工作于这一层。
    • NSURLSession 是 iOS7 中新增的接口,表面上是和 NSURLConnection 并列的,但底层仍然用到了 NSURLConnection 的部分功能 (比如 com.apple.NSURLConnectionLoader 线程),AFNetworking2 和 Alamofire 工作于这一层。

    通常使用 NSURLConnection 时,你会传入一个 Delegate,当调用了 [connection start] 后,这个 Delegate 就会不停收到事件回调。实际上,start 这个函数的内部会会获取 CurrentRunLoop,然后在其中的 DefaultMode 添加了4个 Source0 (即需要手动触发的Source)。CFMultiplexerSource 是负责各种 Delegate 回调的,CFHTTPCookieStorage 是处理各种 Cookie 的。

    当开始网络传输时,我们可以看到 NSURLConnection 创建了两个新线程:com.apple.NSURLConnectionLoader 和 com.apple.CFSocket.private。其中 CFSocket 线程是处理底层 socket 连接的。NSURLConnectionLoader 这个线程内部会使用 RunLoop 来接收底层 socket 的事件,并通过之前添加的 Source0 通知到上层的 Delegate。

    NSURLConnection网络传输的原理

    RunLoop 的实际应用举例

    AFNetworking的RunLoop

    AFURLConnectionOperation 这个类是基于 NSURLConnection 构建的,其希望能在后台线程接收 Delegate 回调。为此 AFNetworking 单独创建了一个线程,并在这个线程中启动了一个 RunLoop:

    + (void)networkRequestThreadEntryPoint:(id)__unused object {
        @autoreleasepool {
            [[NSThread currentThread] setName:@"AFNetworking"];
            NSRunLoop *runLoop = [NSRunLoop currentRunLoop];
            [runLoop addPort:[NSMachPort port] forMode:NSDefaultRunLoopMode];
            [runLoop run];
        }
    }
     
    + (NSThread *)networkRequestThread {
        static NSThread *_networkRequestThread = nil;
        static dispatch_once_t oncePredicate;
        dispatch_once(&oncePredicate, ^{
            _networkRequestThread = [[NSThread alloc] initWithTarget:self selector:@selector(networkRequestThreadEntryPoint:) object:nil];
            [_networkRequestThread start];
        });
        return _networkRequestThread;
    }
    

    RunLoop 启动前内部必须要有至少一个 Timer/Observer/Source,所以 AFNetworking 在 [runLoop run] 之前先创建了一个新的 NSMachPort 添加进去了。通常情况下,调用者需要持有这个 NSMachPort (mach_port) 并在外部线程通过这个 port 发送消息到 loop 内;但此处添加 port 只是为了让 RunLoop 不至于退出,并没有用于实际的发送消息。

    - (void)start {
        [self.lock lock];
        if ([self isCancelled]) {
            [self performSelector:@selector(cancelConnection) onThread:[[self class] networkRequestThread] withObject:nil waitUntilDone:NO modes:[self.runLoopModes allObjects]];
        } else if ([self isReady]) {
            self.state = AFOperationExecutingState;
            [self performSelector:@selector(operationDidStart) onThread:[[self class] networkRequestThread] withObject:nil waitUntilDone:NO modes:[self.runLoopModes allObjects]];
        }
        [self.lock unlock];
    }
    

    当需要这个后台线程执行任务时,AFNetworking 通过调用 [NSObject performSelector:onThread:..] 将这个任务扔到了后台线程的 RunLoop 中。

    AsyncDisplayKit中的Runloop

    AsyncDisplayKit 是 Facebook 推出的用于保持界面流畅性的框架,其原理大致如下:

    UI 线程中一旦出现繁重的任务就会导致界面卡顿,这类任务通常分为3类:排版,绘制,UI对象操作。

    排版通常包括计算视图大小、计算文本高度、重新计算子式图的排版等操作。
    绘制一般有文本绘制 (例如 CoreText)、图片绘制 (例如预先解压)、元素绘制 (Quartz)等操作。
    UI对象操作通常包括 UIView/CALayer 等 UI 对象的创建、设置属性和销毁。

    其中前两类操作可以通过各种方法扔到后台线程执行,而最后一类操作只能在主线程完成,并且有时后面的操作需要依赖前面操作的结果 (例如TextView创建时可能需要提前计算出文本的大小)。ASDK 所做的,就是尽量将能放入后台的任务放入后台,不能的则尽量推迟 (例如视图的创建、属性的调整)。

    为此,ASDK 创建了一个名为 ASDisplayNode 的对象,并在内部封装了 UIView/CALayer,它具有和 UIView/CALayer 相似的属性,例如 frame、backgroundColor等。所有这些属性都可以在后台线程更改,开发者可以只通过 Node 来操作其内部的 UIView/CALayer,这样就可以将排版和绘制放入了后台线程。但是无论怎么操作,这些属性总需要在某个时刻同步到主线程的 UIView/CALayer 去。

    ASDK 仿照 QuartzCore/UIKit 框架的模式,实现了一套类似的界面更新的机制:即在主线程的 RunLoop 中添加一个 Observer,监听了 kCFRunLoopBeforeWaiting 和 kCFRunLoopExit 事件,在收到回调时,遍历所有之前放入队列的待处理的任务,然后一一执行。
    具体的代码可以看这里:_ASAsyncTransactionGroup

    参考:

    https://www.cnblogs.com/kenshincui/p/6823841.html
    https://blog.ibireme.com
    官方文档、其他文档 实践

    相关文章

      网友评论

        本文标题:iOS基础全面分析之二(RunLoop全面分析)

        本文链接:https://www.haomeiwen.com/subject/uscucctx.html