r语言中如何进行两组独立样本秩和检验

作者: 拓端tecdat | 来源:发表于2020-04-17 14:26 被阅读0次

    原文链接

    安装所需的包

    wants <- c("coin") has <- wants %in% rownames(installed.packages()) if(any(!has)) install.packages(wants[!has])>

    一个样本

    测试

    set.seed(123) medH0 <- 30 DV <- sample(0:100, 20, replace=TRUE) DV <- DV[DV != medH0] N <- length(DV) (obs <- sum(DV > medH0))

    [1] 15

    (pGreater <- 1-pbinom(obs-1, N, 0.5))

    [1] 0.02069

    (pTwoSided <- 2 * pGreater)

    [1] 0.04139

    威尔科克森排检验

    IQ <- c(99, 131, 118, 112, 128, 136, 120, 107, 134, 122) medH0 <- 110

    wilcox.test(IQ, alternative="greater", mu=medH0, conf.int=TRUE)

    Wilcoxon signed rank test

    data: IQ

    V =48, p-value =0.01855

    alternative hypothesis:true locationis greater than110

    95 percent confidence interval:

    113.5 Inf

    sample estimates:

    (pseudo)median

    121

    两个独立样本

    测试

    Nj <- c(20, 30) DVa <- rnorm(Nj[1], mean= 95, sd=15) DVb <- rnorm(Nj[2], mean=100, sd=15) wIndDf <- data.frame(DV=c(DVa, DVb), IV=factor(rep(1:2, Nj), labels=LETTERS[1:2]))

    查看每组中低于或高于组合数据中位数的个案数。

    library(coin) median_test(DV ~ IV, distribution="exact", data=wIndDf)

    Exact Median Test

    data:DVbyIV (A, B)

    Z =1.143, p-value =0.3868

    alternative hypothesis:true muis not equal to0

    Wilcoxon秩和检验(曼 - 惠特尼检疫)

    wilcox.test(DV ~ IV, alternative="less", conf.int=TRUE, data=wIndDf)

    Wilcoxon rank sum test

    data: DVby IV

    W =202, p-value =0.02647

    alternative hypothesis:true location shiftis less than0

    95 percent confidence interval:

    -Inf-1.771

    sample estimates:

    differencein location

    -9.761

    library(coin)

    wilcox_test(DV ~ IV, alternative="less", conf.int=TRUE,

    distribution="exact", data=wIndDf)

    Exact Wilcoxon Mann-Whitney Rank Sum Test

    data:DVbyIV (A, B)

    Z =-1.941, p-value =0.02647

    alternative hypothesis:true muis less than0

    95 percent confidence interval:

    -Inf-1.771

    sample estimates:

    differencein location

    -9.761

    两个依赖样本

    测试

    N <- 20 DVpre <- rnorm(N, mean= 95, sd=15) DVpost <- rnorm(N, mean=100, sd=15) wDepDf <- data.frame(id=factor(rep(1:N, times=2)), DV=c(DVpre, DVpost), IV=factor(rep(0:1, each=N), labels=c("pre", "post")))

    medH0 <- 0 DVdiff <- aggregate(DV ~ id, FUN=diff, data=wDepDf) (obs <- sum(DVdiff$DV < medH0))

    [1] 7

    (pLess <- pbinom(obs, N, 0.5))

    [1] 0.1316

    排名威尔科克森检验

    wilcoxsign_test(DV ~ IV | id, alternative="greater", distribution="exact", data=wDepDf)

    Exact Wilcoxon-Signed-Rank Test

    data:ybyx (neg, pos)

    stratifiedby block

    Z =2.128, p-value =0.01638

    alternative hypothesis:true muis greater than0

    分离(自动)加载的包

    try(detach(package:coin)) try(detach(package:modeltools)) try(detach(package:survival)) try(detach(package:mvtnorm)) try(detach(package:splines)) try(detach(package:stats4))

    相关文章

      网友评论

        本文标题:r语言中如何进行两组独立样本秩和检验

        本文链接:https://www.haomeiwen.com/subject/vfzevhtx.html