美文网首页
卡顿监控

卡顿监控

作者: JerrySi | 来源:发表于2022-07-26 16:35 被阅读0次

    最近参考Matrix做了卡顿监控的流程,整体流程思想就不多说了。这里注释了核心方法代码,做下记录,也方便大家阅读代码。

    1. 子线程监听-核心主流程
    while (YES) {
            @autoreleasepool {
                if (g_bMonitor) {
                    SDumpType dumpType = [self check];
                    if (m_bStop) {
                        break;
                    }
                    
                    if (dumpType != SDumpType_Unlag) {
                        // 主线程卡顿
                        if (SDumpType_BackgroundMainThreadBlock == dumpType || SDumpType_MainThreadBlock == dumpType) {
                            // 线程数超出64个时会导致主线程卡顿,如果卡顿是由于线程多造成的,那么就没必 要通过获取主线程堆栈去找卡顿原因了(线程过多时 CPU 在切换线程上下文时,还会更新寄存器,更新寄存器时需要寻址,而寻址的过程还会有较大的 CPU 消耗) 否则,不是因为线程过多造成的卡顿,则更新最近最耗时的堆栈,并回到主线程写入文件记录
                            if (g_CurrentThreadCount > 64) {
                                dumpType = SDumpType_BlockThreadTooMuch;
                                [self dumpWithType:dumpType];
                            } else {
                                // 需要过滤
                                SFilterType filterType = [self needFilter];
                                if (filterType == SFilterType_None) {
                                    if (g_MainThreadHandle) {
                                        if (g_PointMainThreadArray != NULL) {
                                            free(g_PointMainThreadArray);
                                            g_PointMainThreadArray = NULL;
                                            g_PointStackCount = 0;
                                        }
                                        g_PointMainThreadArray = [m_pointMainThreadHandler getPointStack:g_PointStackCount];
                                        g_PointMainThreadRepeatCountArray = [m_pointMainThreadHandler getPointStackRepeatCount];
                                        [self dumpWithType:dumpType];
                                        
                                        if (g_PointMainThreadArray != NULL) {
                                            free(g_PointMainThreadArray);
                                            g_PointMainThreadArray = NULL;
                                            g_PointStackCount = 0;
                                        }
                                    } else {
                                        [self dumpWithType:dumpType];
                                    }
                                } else {
                                   
                                }
                            }
                        } else {
                            [self dumpWithType:dumpType];
                        }
                    } else {
                        // 没有卡顿,重置状态
                        [self resetStatus];
                    }
                }
    
                // 随着时间间隔变长, 每次主线程堆栈存储的次数就变多
                // 代表当前堆栈卡顿时间很长
                for (int nCnt = 0; nCnt < m_nIntervalTime && !m_bStop; nCnt++) {
                    if (g_MainThreadHandle && g_bMonitor) {
                        // 1s / 50ms
                        int intervalCount = g_CheckPeriodTime / g_PerStackInterval;
                        if (intervalCount <= 0) {
                            // 休眠 1s
                            usleep(g_CheckPeriodTime);
                        } else {
                            for (int index = 0; index < intervalCount && !m_bStop; index++) {
                                // 休眠 50ms
                                // 每50ms去获取主线程堆栈
                                usleep(g_PerStackInterval);
                                size_t stackBytes = sizeof(uintptr_t) * g_StackMaxCount;
                                uintptr_t *stackArray = (uintptr_t *)malloc(stackBytes);
                                if (stackArray == NULL) {
                                    continue;
                                }
                                __block size_t nSum = 0;
                                memset(stackArray, 0, stackBytes);
                                // 暂停主线程, 获取线程堆栈
                                [SMachHelper getCurrentMainThreadStack:^(NSUInteger pc) {
                                    stackArray[nSum] = (uintptr_t)pc;
                                    nSum++;
                                } withMaxEntries:g_StackMaxCount];
                                // 最多存储10组堆栈, 每组堆栈最多50行
                                [m_pointMainThreadHandler addThreadStack:stackArray andStackCount:nSum];
                            }
                        }
                    } else {
                        // 休眠 1s
                        usleep(g_CheckPeriodTime);
                     }
                }
    
                if (m_bStop) {
                    break;
                }
            }
        }
    
    1. 检查是否是卡顿
    - (SDumpType)check {
    
        BOOL tmp_g_bRun = g_bRun;
        
        // runloop运行的最后时间
        struct timeval tmp_g_tvRun = g_tvRun;
    
        // 当前时间
        struct timeval tvCur;
        gettimeofday(&tvCur, NULL);
        
        // 计算时间间隔, 但是微秒
        unsigned long long diff = [SANRMonitor diffTime:&tmp_g_tvRun endTime:&tvCur];
    
        // TODO: 目前g_tvSuspend就是启动时间,永远比tmp_g_tvRun小
        struct timeval tmp_g_tvSuspend = g_tvSuspend;
        if (__timercmp(&tmp_g_tvSuspend, &tmp_g_tvRun, >)) {
            return SDumpType_Unlag;
        }
    
        m_blockDiffTime = 0;
        
        // 运行中 & 运行时间非空 & 运行时间<当前时间 & 时间间隔>200ms
        if (tmp_g_bRun && tmp_g_tvRun.tv_sec && tmp_g_tvRun.tv_usec && __timercmp(&tmp_g_tvRun, &tvCur, <) && diff > g_RunLoopTimeOut) {
            m_blockDiffTime = diff;
    
            // TODO: 一直在前端, 这个不会走
            if (g_bBackgroundLaunch) {
                return SDumpType_Unlag;
            }
    
            if (m_currentState == UIApplicationStateBackground) {
                if (g_enterBackground.tv_sec != 0 || g_enterBackground.tv_usec != 0) {
                    // 计算在后台了多少时间=当前时间-进入后台时间
                    unsigned long long enterBackgroundTime = [SANRMonitor diffTime:&g_enterBackground endTime:&tvCur];
                    // TODO: 进入后台的时间<当前时间 & 在后台了的时间>180s
                    if (__timercmp(&g_enterBackground, &tvCur, <) && (enterBackgroundTime > APP_SHOULD_SUSPEND)) {
                        return SDumpType_Unlag;
                    }
                }
    
                return SDumpType_BackgroundMainThreadBlock;
            }
            return SDumpType_MainThreadBlock;
        }
    
        return SDumpType_Unlag;
    }
    
    1. 过滤堆栈信息,判断是否有重复堆栈信息等... 避免重复记录
    - (SFilterType)needFilter {
        BOOL bIsSame = NO;
        static std::vector<NSUInteger> vecCallStack(300);
        __block NSUInteger nSum = 0;
        __block NSUInteger stackFeat = 0; // use the top stack address;
    
        // TODO: g_MainThreadHandle一直是YES
        if (g_MainThreadHandle) {
            nSum = [m_pointMainThreadHandler getLastMainThreadStackCount];
            uintptr_t *stack = [m_pointMainThreadHandler getLastMainThreadStack];
            if (stack) {
                for (size_t i = 0; i < nSum; i++) {
                    vecCallStack[i] = stack[i];
                }
                // 获取最后堆栈的栈顶 符号地址
                stackFeat = kssymbolicate_symboladdress(stack[0]);
            } else {
                nSum = 0;
            }
        }
    
        // 堆栈层级太少 直接返回
        if (nSum <= 1) {
            return SFilterType_Meaningless;
        }
        
        // 判断堆栈是否和之前一样
        if (nSum == m_lastMainThreadStackCount) {
            NSUInteger index = 0;
            for (index = 0; index < nSum; index++) {
                if (vecCallStack[index] != m_vecLastMainThreadCallStack[index]) {
                    break;
                }
            }
            if (index == nSum) {
                bIsSame = YES;
            }
        }
    
        if (bIsSame) {
            // 如果堆栈记录与之前一样  则使用退火算法,修改检测时间间隔,每次增加1s
            NSUInteger lastTimeInterval = m_nIntervalTime;
            m_nIntervalTime = m_nLastTimeInterval + m_nIntervalTime;
            m_nLastTimeInterval = lastTimeInterval;
            return SFilterType_Annealing;
        } else {
            m_nIntervalTime = 1;
            m_nLastTimeInterval = 1;
    
            // 如果不一样 更新记录的最后一次调用栈
            //update last call stack
            m_vecLastMainThreadCallStack.clear();
            m_lastMainThreadStackCount = 0;
            for (NSUInteger index = 0; index < nSum; index++) {
                m_vecLastMainThreadCallStack.push_back(vecCallStack[index]);
                m_lastMainThreadStackCount++;
            }
    
            // 过滤重复的堆栈信息
            // 如果栈顶符号存储过超过3次,那么认为重复记录
            if (g_filterSameStack) {
                NSUInteger repeatCnt = [m_stackHandler addStackFeat:stackFeat];
                if (repeatCnt > g_triggerdFilterSameCnt) {
                    return SFilterType_TrigerByTooMuch;
                }
            }
            return SFilterType_None;
        }
    }
    
    1. 找到重复最多的堆栈
    - (uintptr_t *)getPointStack:(size_t &)count {
        pthread_mutex_lock(&m_threadLock);
        size_t maxValue = 0;
        BOOL trueStack = NO;
        for (int i = 0; i < m_cycleArrayCount; i++) {
            size_t currentValue = m_topStackAddressRepeatArray[i];
            int stackCount = (int)m_mainThreadStackCount[i];
            // 找到10层以上 同时 次数最多的
            if (currentValue >= maxValue && stackCount > SHORTEST_LENGTH_OF_STACK) {
                maxValue = currentValue;
                trueStack = YES;
            }
        }
    
        if (!trueStack) {
            pthread_mutex_unlock(&m_threadLock);
            return NULL;
        }
    
        // 找到对应堆栈索引
        size_t currentIndex = (m_tailPoint + m_cycleArrayCount - 1) % m_cycleArrayCount;
        for (int i = 0; i < m_cycleArrayCount; i++) {
            int trueIndex = (m_tailPoint + m_cycleArrayCount - i - 1) % m_cycleArrayCount;
            int stackCount = (int)m_mainThreadStackCount[trueIndex];
            if (m_topStackAddressRepeatArray[trueIndex] == maxValue && stackCount > SHORTEST_LENGTH_OF_STACK) {
                currentIndex = trueIndex;
                break;
            }
        }
    
        // current count of point stack
        size_t stackCount = m_mainThreadStackCount[currentIndex];
        size_t pointThreadSize = sizeof(uintptr_t) * stackCount;
        uintptr_t *pointThreadStack = (uintptr_t *)malloc(pointThreadSize);
    
        size_t repeatCountArrayBytes = stackCount * sizeof(int);
        m_mainThreadStackRepeatCountArray = (int *)malloc(repeatCountArrayBytes);
        if (m_mainThreadStackRepeatCountArray != NULL) {
            memset(m_mainThreadStackRepeatCountArray, 0, repeatCountArrayBytes);
        }
    
        // calculate the repeat count
        for (size_t i = 0; i < stackCount; i++) {
            for (int innerIndex = 0; innerIndex < m_cycleArrayCount; innerIndex++) {
                size_t innerStackCount = m_mainThreadStackCount[innerIndex];
                for (size_t idx = 0; idx < innerStackCount; idx++) {
                    // point stack i_th address compare to others
                    if (m_mainThreadStackCycleArray[currentIndex][i] == m_mainThreadStackCycleArray[innerIndex][idx]) {
                        m_mainThreadStackRepeatCountArray[i] += 1;
                    }
                }
            }
        }
    
        if (pointThreadStack != NULL) {
            memset(pointThreadStack, 0, pointThreadSize);
            for (size_t idx = 0; idx < stackCount; idx++) {
                pointThreadStack[idx] = m_mainThreadStackCycleArray[currentIndex][idx];
            }
            pthread_mutex_unlock(&m_threadLock);
            count = stackCount;
            return pointThreadStack;
        }
        pthread_mutex_unlock(&m_threadLock);
        return NULL;
    }
    

    相关文章

      网友评论

          本文标题:卡顿监控

          本文链接:https://www.haomeiwen.com/subject/vjpzirtx.html