爱因斯坦是最早领略到量子力学的奥妙的人之一。1905年,他写了一篇论文,将普朗克的理论应用到光电效应中。光电效应是海因里希·赫兹在1887年描述的一种光从金属中剥离电子的现象,经典电磁学并不能解释为什么这种现象只发生在特定的频率。爱因斯坦则选择利用普朗克的“量子”视角来看待光,即光并不像一个连续的波,而是像一束粒子流,这些光的粒子——光子——有着离散的能量。
有意思的是,普朗克驳斥了爱因斯坦的假设。罗伯特·密立根也是如此,并且他开始试图全力通过实验来驳斥爱因斯坦的理论……但实验结果却意外地为这一理论提供了验证。之后的故事相信很多人也都听过了,当其他研究人员的工作将量子物理学带入了一个更加“奇幻”的领域时,连爱因斯坦自己也开始对量子理论表示怀疑。
玻尔是首个用量子力学来描述原子的人。原子是由带正电的原子核和带负电的电子构成的。电荷相反的粒子会相互吸引。所以,根据电磁理论,电子会很快就陷入原子核中。然而,我们看到原子是稳定的。
为了解释原子稳定性的问题,1913年,玻尔基于欧内斯特·卢瑟福在更早些时候的模型,提出了一个与之前完全不同的原子模型。在玻尔所提出的原子模型中,当电子在离散的圆形轨道之间跃迁时,原子会发射或吸收能量。1915年,阿诺尔德·索末菲用椭圆轨道取代了圆形轨道,使得玻尔模型得到了进一步推广。
玻尔模型1925年,海森堡、马克斯·玻恩和帕斯库尔·约尔当,开始以玻尔和索末菲的工作为起点,用矩阵代数创建了量子力学的数学公式。沃尔夫冈·泡利将这种矩阵力学应用到玻尔的原子模型中。但在1926年,这种方法就被埃尔温·薛定谔提出的波动方程所取代。在这一里程碑式的进展中,路易斯·德布罗意也做出了基础性的贡献,从某种意义上看,是德布罗意扭转了我们看待量子世界的方式:如果光能表现出粒子的行为,那么电子也能表现出波的行为。后来,保罗·狄拉克展示了海森堡和薛定谔的图景看起来不同,其实是等价的。
在薛定谔的波动方程中,量子系统的状态是由波函数描述的。在经典物理学中,牛顿力学可以精确地预测物体的位置和速度;但在量子物理学中,玻恩对波动方程的解释却将电子的轨道变成了一种难以想象的事物——概率密度云。这意味着一个电子在同一时刻可占据它的整个轨道。
由此,玻尔和海森堡提出了量子力学中的“哥本哈根诠释”。根据这个诠释,当对一个系统进行测量时,这种不确定性就消失了;只有这时,波函数才会坍缩,叠加的状态才会变成粒子的一个位置。也就是说,是观察者的观测改变了这个系统。
进行观测后,波函数会坍缩这种说法引发了薛定谔提出著名的思想实验——薛定谔猫,这是一只被藏匿于密闭盒子中、同时处于既死又活的状态的猫,这种生与死的叠加状态会一直持续,直到盒子被打开。在薛定谔方程中,粒子的位置和速度无法被同时精确地知道,这一点反映也在海森堡的不确定性原理中。
1928年,虽然量子力学的基础已经基本完善,但辩论从未停止过,尤其是爱因斯坦与玻尔之间持续了一段长时间的论战。争论的一个中心问题是,波函数是否包含了关于一个系统的所有可能信息,或者说,是否有潜在的因素——隐变量——决定了一个特定测量的结果?
根据量子力学,对于两个“纠缠”的全同粒子,观察者对其中一个的影响可以瞬间传递到另一个粒子之上,即便这两个粒子在空间上是彼此相距甚远,爱因斯坦将其称之为“鬼魅般的超距作用”。爱因斯坦认为,我们可以利用隐变量来解释这种效应,而不必诉诸于概率——“上帝不掷骰子”,他在一封写给玻恩的信中如是说道。
爱因斯坦在1935年提出的思想实验如今被称为“爱因斯坦-波多尔斯基-罗森佯谬”(EPR佯谬)。这个实验产生了量子纠缠的概念,也就是我们今天所知道的超距作用。
1964年,约翰·贝尔受到了另一个量子理论诠释的启发,这个诠释是由大卫·玻姆在德布罗意的导波理论基础上发展而成的,它驱散了哥本哈根诠释中的概率性迷雾,支持独立于观测的确定性视角。贝尔证明,如果隐变量存在,实验观察到的概率就必须低于一定的极限,这被称为“贝尔不等式”。之后的许多实验都表明,不等式被违反了,这表明并不存在隐变量。
尽管量子力学已经一次又一次地证明了它的预测能力,但这并不能削弱这样一个事实:这些自1900年由普朗克开启的所有这些奇怪现象,已经累计成了对量子理论的诸多诠释。
--------参考链接--------
https://science.sciencemag.org/content/289/5481/893
https://space.mit.edu/home/tegmark/PDF/quantum.pdf
https://www.bbvaopenmind.com/en/science/physics/understand-quantum-physics/
网友评论