数学归纳法(Mathematical Induction, MI)是一种数学证明方法,通常被用于证明某个给定命题在整个(或者局部)自然数范围内成立。
最简单和常见的数学归纳法是证明当n等于任意一个自然数时某命题成立。证明分下面两步:
①证明当n= 1时命题成立。
②假设n=m时命题成立,那么可以推导出在n=m+1时命题也成立。(m代表任意自然数)
这种方法的原理在于:首先证明在某个起点值时命题成立,然后证明从一个值到下一个值的过程有效。当这两点都已经证明,那么任意值都可以通过反复使用这个方法推导出来。把这个方法想成多米诺效应也许更容易理解一些。例如:你有一列很长的直立着的多米诺骨牌,如果你可以:
证明第一张骨牌会倒。
证明只要任意一张骨牌倒了,那么与其相邻的下一张骨牌也会倒。
骨牌一个接一个倒下就如同一个值接下一个值
骨牌一个接一个倒下就如同一个值接下一个值
那么便可以下结论:所有的骨牌都会倒下。
参考文章:数学归纳法---百度百科
网友评论