Android 性能优化实战 - 界面卡顿

作者: 红橙Darren | 来源:发表于2018-11-16 22:24 被阅读103次

今天是个奇怪的日子,有三位同学找我,都是关于界面卡顿的问题,问我能不能帮忙解决下。由于性能优化涉及的知识点比较多,我一时半会也无法彻底回答。恰好之前在做需求时也遇到了一个卡顿的问题,因此今晚写下这篇卡顿优化的文章,希望对大家有所帮助。先来看看卡顿的现象:


刷新数据时卡顿

1. 查找卡顿原因

从上面的现象来看,应该是主线程执行了耗时操作引起了卡顿,因为正常滑动是没问题的,只有在刷新数据的时候才会出现卡顿。至于什么情况下会引起卡顿,之前在自定义 View 部分已有详细讲过,这里就不在啰嗦。我们猜想可能是耗时引起的卡顿,但也不能 100% 确定,况且我们也并不知道是哪个方法引起的,因此我们只能借助一些常用工具来分析分析,我们打开 Android Device Monitor 。

打开 Android Device Monitor 查找耗时方法

2. RxJava 线程切换

我们找到了是高斯模糊处理耗时导致了界面卡顿,那现在我们把高斯模糊算法处理放入子线程中去,处理完后再次切换到主线程,这里采用 RxJava 来实现。

  Observable.just(resource.getBitmap())
          .map(bitmap -> {
              // 高斯模糊
              Bitmap blurBitmap = ImageUtil.doBlur(resource.getBitmap(), 100, false);
              blurBitmapCache.put(path, blurBitmap);
              return blurBitmap;
          }).subscribeOn(Schedulers.io())
          .observeOn(AndroidSchedulers.mainThread())
          .subscribe(blurBitmap -> {
            if (blurBitmap != null) {
              recommendBgIv.setImageBitmap(blurBitmap);
            }
          });

关于响应式编程思想和 RxJava 的实现原理大家可以参考以下几篇文章:

2. 高斯模糊算法分析

把耗时操作放到子线程中去处理,的确解决了界面卡顿问题。但这其实是治标不治本,我们发现图片加载处理异常缓慢,内存久高不下有时可能会导致内存溢出。接下来我们来分析一下高斯模糊的算法实现:

图片来源于维基百科

看上面这几张图,我们通过怎样的操作才能把第一张图处理成下面这两张图?其实就是模糊化,怎么才能做到模糊化?我们来看下高斯模糊算法的处理过程。再上两张图:

处理前 处理后

所谓"模糊",可以理解成每一个像素都取周边像素的平均值。上图中,2是中间点,周边点都是1。"中间点"取"周围点"的平均值,就会变成1。在数值上,这是一种"平滑化"。在图形上,就相当于产生"模糊"效果,"中间点"失去细节。

为了得到不同的模糊效果,高斯模糊引入了权重的概念。上面分别是原图、模糊半径3像素、模糊半径10像素的效果。模糊半径越大,图像就越模糊。从数值角度看,就是数值越平滑。接下来的问题就是,既然每个点都要取周边像素的平均值,那么应该如何分配权重呢?如果使用简单平均,显然不是很合理,因为图像都是连续的,越靠近的点关系越密切,越远离的点关系越疏远。因此,加权平均更合理,距离越近的点权重越大,距离越远的点权重越小。对于这种处理思想,很显然正太分布函数刚好满足我们的需求。但图片是二维的,因此我们需要根据一维的正太分布函数,推导出二维的正太分布函数:

一维正太分布函数 二维正太分布函数 权重处理
        if (radius < 1) {//模糊半径小于1
            return (null);
        }

        int w = bitmap.getWidth();
        int h = bitmap.getHeight();

        // 通过 getPixels 获得图片的像素数组
        int[] pix = new int[w * h];
        bitmap.getPixels(pix, 0, w, 0, 0, w, h);

        int wm = w - 1;
        int hm = h - 1;
        int wh = w * h;
        int div = radius + radius + 1;

        int r[] = new int[wh];
        int g[] = new int[wh];
        int b[] = new int[wh];
        int rsum, gsum, bsum, x, y, i, p, yp, yi, yw;
        int vmin[] = new int[Math.max(w, h)];

        int divsum = (div + 1) >> 1;
        divsum *= divsum;
        int dv[] = new int[256 * divsum];
        for (i = 0; i < 256 * divsum; i++) {
            dv[i] = (i / divsum);
        }

        yw = yi = 0;

        int[][] stack = new int[div][3];
        int stackpointer;
        int stackstart;
        int[] sir;
        int rbs;
        int r1 = radius + 1;
        int routsum, goutsum, boutsum;
        int rinsum, ginsum, binsum;

        // 循环行
        for (y = 0; y < h; y++) {
            rinsum = ginsum = binsum = routsum = goutsum = boutsum = rsum = gsum = bsum = 0;
            // 半径处理
            for (i = -radius; i <= radius; i++) {
                p = pix[yi + Math.min(wm, Math.max(i, 0))];
                sir = stack[i + radius];
                // 拿到 rgb 
                sir[0] = (p & 0xff0000) >> 16;
                sir[1] = (p & 0x00ff00) >> 8;
                sir[2] = (p & 0x0000ff);
                rbs = r1 - Math.abs(i);
                rsum += sir[0] * rbs;
                gsum += sir[1] * rbs;
                bsum += sir[2] * rbs;
                if (i > 0) {
                    rinsum += sir[0];
                    ginsum += sir[1];
                    binsum += sir[2];
                } else {
                    routsum += sir[0];
                    goutsum += sir[1];
                    boutsum += sir[2];
                }
            }
            stackpointer = radius;
            // 循环每一列
            for (x = 0; x < w; x++) {

                r[yi] = dv[rsum];
                g[yi] = dv[gsum];
                b[yi] = dv[bsum];

                rsum -= routsum;
                gsum -= goutsum;
                bsum -= boutsum;

                stackstart = stackpointer - radius + div;
                sir = stack[stackstart % div];

                routsum -= sir[0];
                goutsum -= sir[1];
                boutsum -= sir[2];

                if (y == 0) {
                    vmin[x] = Math.min(x + radius + 1, wm);
                }
                p = pix[yw + vmin[x]];

                sir[0] = (p & 0xff0000) >> 16;
                sir[1] = (p & 0x00ff00) >> 8;
                sir[2] = (p & 0x0000ff);

                rinsum += sir[0];
                ginsum += sir[1];
                binsum += sir[2];

                rsum += rinsum;
                gsum += ginsum;
                bsum += binsum;

                stackpointer = (stackpointer + 1) % div;
                sir = stack[(stackpointer) % div];

                routsum += sir[0];
                goutsum += sir[1];
                boutsum += sir[2];

                rinsum -= sir[0];
                ginsum -= sir[1];
                binsum -= sir[2];

                yi++;
            }
            yw += w;
        }
        for (x = 0; x < w; x++) {
          // 与上面代码类似 ......

对于部分哥们来说,上面的函数和代码可能看不太懂。我们来讲通俗一点,一方面如果我们的图片越大,像素点也就会越多,高斯模糊算法的复杂度就会越大。如果半径 radius 越大图片会越模糊,权重计算的复杂度也会越大。因此我们可以从这两个方面入手,要么压缩图片的宽高,要么缩小 radius 半径。但如果 radius 半径设置过小,模糊效果肯定不太好,因此我们还是在宽高上面想想办法,接下来我们去看看 Glide 的源码:

  private Bitmap decodeFromWrappedStreams(InputStream is,
      BitmapFactory.Options options, DownsampleStrategy downsampleStrategy,
      DecodeFormat decodeFormat, boolean isHardwareConfigAllowed, int requestedWidth,
      int requestedHeight, boolean fixBitmapToRequestedDimensions,
      DecodeCallbacks callbacks) throws IOException {
    long startTime = LogTime.getLogTime();

    int[] sourceDimensions = getDimensions(is, options, callbacks, bitmapPool);
    int sourceWidth = sourceDimensions[0];
    int sourceHeight = sourceDimensions[1];
    String sourceMimeType = options.outMimeType;

    // If we failed to obtain the image dimensions, we may end up with an incorrectly sized Bitmap,
    // so we want to use a mutable Bitmap type. One way this can happen is if the image header is so
    // large (10mb+) that our attempt to use inJustDecodeBounds fails and we're forced to decode the
    // full size image.
    if (sourceWidth == -1 || sourceHeight == -1) {
      isHardwareConfigAllowed = false;
    }

    int orientation = ImageHeaderParserUtils.getOrientation(parsers, is, byteArrayPool);
    int degreesToRotate = TransformationUtils.getExifOrientationDegrees(orientation);
    boolean isExifOrientationRequired = TransformationUtils.isExifOrientationRequired(orientation);
    // 关键在于这两行代码,如果没有设置或者获取不到图片的宽高,就会加载原图
    int targetWidth = requestedWidth == Target.SIZE_ORIGINAL ? sourceWidth : requestedWidth;
    int targetHeight = requestedHeight == Target.SIZE_ORIGINAL ? sourceHeight : requestedHeight;

    ImageType imageType = ImageHeaderParserUtils.getType(parsers, is, byteArrayPool);
    // 计算压缩比例
    calculateScaling(
        imageType,
        is,
        callbacks,
        bitmapPool,
        downsampleStrategy,
        degreesToRotate,
        sourceWidth,
        sourceHeight,
        targetWidth,
        targetHeight,
        options);

    calculateConfig(
        is,
        decodeFormat,
        isHardwareConfigAllowed,
        isExifOrientationRequired,
        options,
        targetWidth,
        targetHeight);

    boolean isKitKatOrGreater = Build.VERSION.SDK_INT >= Build.VERSION_CODES.KITKAT;
    // Prior to KitKat, the inBitmap size must exactly match the size of the bitmap we're decoding.
    if ((options.inSampleSize == 1 || isKitKatOrGreater) && shouldUsePool(imageType)) {
      int expectedWidth;
      int expectedHeight;
      if (sourceWidth >= 0 && sourceHeight >= 0
          && fixBitmapToRequestedDimensions && isKitKatOrGreater) {
        expectedWidth = targetWidth;
        expectedHeight = targetHeight;
      } else {
        float densityMultiplier = isScaling(options)
            ? (float) options.inTargetDensity / options.inDensity : 1f;
        int sampleSize = options.inSampleSize;
        int downsampledWidth = (int) Math.ceil(sourceWidth / (float) sampleSize);
        int downsampledHeight = (int) Math.ceil(sourceHeight / (float) sampleSize);
        expectedWidth = Math.round(downsampledWidth * densityMultiplier);
        expectedHeight = Math.round(downsampledHeight * densityMultiplier);

        if (Log.isLoggable(TAG, Log.VERBOSE)) {
          Log.v(TAG, "Calculated target [" + expectedWidth + "x" + expectedHeight + "] for source"
              + " [" + sourceWidth + "x" + sourceHeight + "]"
              + ", sampleSize: " + sampleSize
              + ", targetDensity: " + options.inTargetDensity
              + ", density: " + options.inDensity
              + ", density multiplier: " + densityMultiplier);
        }
      }
      // If this isn't an image, or BitmapFactory was unable to parse the size, width and height
      // will be -1 here.
      if (expectedWidth > 0 && expectedHeight > 0) {
        setInBitmap(options, bitmapPool, expectedWidth, expectedHeight);
      }
    }
    // 通过流 is 和 options 解析 Bitmap
    Bitmap downsampled = decodeStream(is, options, callbacks, bitmapPool);
    callbacks.onDecodeComplete(bitmapPool, downsampled);

    if (Log.isLoggable(TAG, Log.VERBOSE)) {
      logDecode(sourceWidth, sourceHeight, sourceMimeType, options, downsampled,
          requestedWidth, requestedHeight, startTime);
    }

    Bitmap rotated = null;
    if (downsampled != null) {
      // If we scaled, the Bitmap density will be our inTargetDensity. Here we correct it back to
      // the expected density dpi.
      downsampled.setDensity(displayMetrics.densityDpi);

      rotated = TransformationUtils.rotateImageExif(bitmapPool, downsampled, orientation);
      if (!downsampled.equals(rotated)) {
        bitmapPool.put(downsampled);
      }
    }

    return rotated;
  }

4. LruCache 缓存

最后我们还可以再做一些优化,数据没有改变时不去刷新数据,还有就是采用 LruCache 缓存,相同的高斯模糊图像直接从缓存获取。需要提醒大家的是,我们在使用之前最好了解其源码实现,之前有见到同事这样写过:

  /**
   * 高斯模糊缓存的大小 4M
   */
  private static final int BLUR_CACHE_SIZE = 4 * 1024 * 1024;
  /**
   * 高斯模糊缓存,防止刷新时抖动
   */
  private LruCache<String, Bitmap> blurBitmapCache = new LruCache<String, Bitmap>(BLUR_CACHE_SIZE);

  // 伪代码 ......
  // 有缓存直接设置
  Bitmap blurBitmap = blurBitmapCache.get(item.userResp.headPortraitUrl);
  if (blurBitmap != null) {
    recommendBgIv.setImageBitmap(blurBitmap);
    return;
  }

  // 从后台获取,进行高斯模糊后,再缓存 ...

这样写有两个问题,第一个问题是我们发现整个应用 OOM 了都还可以缓存数据,第二个问题是 LruCache 可以实现比较精细的控制,而默认缓存池设置太大了会导致浪费内存,设置小了又会导致图片经常被回收。第一个问题我们只要了解其内部实现就迎刃而解了,关键问题在于缓存大小该怎么设置?如果我们想不到好的解决方案,那么也可以去参考参考 Glide 的源码实现。

  public Builder(Context context) {
    this.context = context;
    activityManager = (ActivityManager)context.getSystemService(Context.ACTIVITY_SERVICE);
    screenDimensions = new DisplayMetricsScreenDimensions(context.getResources().getDisplayMetrics());

    // On Android O+ Bitmaps are allocated natively, ART is much more efficient at managing
    // garbage and we rely heavily on HARDWARE Bitmaps, making Bitmap re-use much less important.
    // We prefer to preserve RAM on these devices and take the small performance hit of not
    // re-using Bitmaps and textures when loading very small images or generating thumbnails.
    if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.O && isLowMemoryDevice(activityManager)) {
        bitmapPoolScreens = 0;
    }
  }

  // Package private to avoid PMD warning.
  MemorySizeCalculator(MemorySizeCalculator.Builder builder) {
    this.context = builder.context;

    arrayPoolSize =
        isLowMemoryDevice(builder.activityManager)
            ? builder.arrayPoolSizeBytes / LOW_MEMORY_BYTE_ARRAY_POOL_DIVISOR
            : builder.arrayPoolSizeBytes;
    int maxSize =
        getMaxSize(
            builder.activityManager, builder.maxSizeMultiplier, builder.lowMemoryMaxSizeMultiplier);

    int widthPixels = builder.screenDimensions.getWidthPixels();
    int heightPixels = builder.screenDimensions.getHeightPixels();
    int screenSize = widthPixels * heightPixels * BYTES_PER_ARGB_8888_PIXEL;

    int targetBitmapPoolSize = Math.round(screenSize * builder.bitmapPoolScreens);

    int targetMemoryCacheSize = Math.round(screenSize * builder.memoryCacheScreens);
    int availableSize = maxSize - arrayPoolSize;

    if (targetMemoryCacheSize + targetBitmapPoolSize <= availableSize) {
      memoryCacheSize = targetMemoryCacheSize;
      bitmapPoolSize = targetBitmapPoolSize;
    } else {
      float part = availableSize / (builder.bitmapPoolScreens + builder.memoryCacheScreens);
      memoryCacheSize = Math.round(part * builder.memoryCacheScreens);
      bitmapPoolSize = Math.round(part * builder.bitmapPoolScreens);
    }

    if (Log.isLoggable(TAG, Log.DEBUG)) {
      Log.d(
          TAG,
          "Calculation complete"
              + ", Calculated memory cache size: "
              + toMb(memoryCacheSize)
              + ", pool size: "
              + toMb(bitmapPoolSize)
              + ", byte array size: "
              + toMb(arrayPoolSize)
              + ", memory class limited? "
              + (targetMemoryCacheSize + targetBitmapPoolSize > maxSize)
              + ", max size: "
              + toMb(maxSize)
              + ", memoryClass: "
              + builder.activityManager.getMemoryClass()
              + ", isLowMemoryDevice: "
              + isLowMemoryDevice(builder.activityManager));
    }
  }

可以看到 Glide 是根据每个 App 的内存情况,以及不同手机设备的版本和分辨率,计算出一个比较合理的初始值。关于 Glide 源码分析大家可以看看这篇:第三方开源库 Glide - 源码分析(补)

5. 最后总结

工具的使用其实并不难,相信我们在网上找几篇文章实践实践,就能很熟练找到其原因。难度还在于我们需要了解 Android 的底层源码,第三方开源库的原理实现。个人还是建议大家平时多去看看 Android Framework 层的源码,多去学学第三方开源库的内部实现,多了解数据结构和算法。真正的做到治标又治本

视频地址:12月8号晚八点

相关文章

  • Android 性能优化实战 - 界面卡顿

    今天是个奇怪的日子,有三位同学找我,都是关于界面卡顿的问题,问我能不能帮忙解决下。由于性能优化涉及的知识点比较多,...

  • Android 性能优化实战 - 界面卡顿

    今天是个奇怪的日子,有三位同学找我,都是关于界面卡顿的问题,问我能不能帮忙解决下。由于性能优化涉及的知识点比较多,...

  • Android开发页面帧率优化有感

    Android APP 优化工具分析Android App优化之消除卡顿Android性能优化:卡顿优化Andro...

  • Android性能优化 - 消除卡顿

    性能优化系列阅读 Android性能优化 性能优化 - 消除卡顿 性能优化 - 内存优化 性能分析工具 - Tra...

  • Android性能优化 - 内存优化

    性能优化系列阅读 Android性能优化 性能优化 - 消除卡顿 性能优化- 内存优化 性能分析工具 - Trac...

  • iOS - 界面优化

    APP的界面优化 什么样的界面让你觉得需要被优化呢?就是界面会卡顿咯。 下面介绍 卡顿原理 卡顿检测 实战 1、界...

  • Android性能优化

    Android性能优化 Android 性能优化的方法 性能问题一般分为3类 UI卡顿 内存问题 耗电问题 布局优...

  • Android性能优化(traceView)

    一、性能优化的目的:减少卡顿 二、性能优化工具:TraceView TraceView是android SDK自带...

  • iOS 性能优化二

    主要讲解界面卡顿原因/优化方案/离屏渲染 iOS 性能优化一iOS 性能优化二iOS 性能优化三 1. 开发中遇到...

  • Android UI性能优化

    Ui性能优化 参考博客:Android UI性能优化实战 识别绘制中的性能问题Android UI性能优化详解 1...

网友评论

本文标题:Android 性能优化实战 - 界面卡顿

本文链接:https://www.haomeiwen.com/subject/vyjvfqtx.html