concurrentHashmap是JDK提供的一个线程安全的Map容器类,因为它是线程安全的,同时获取和释放锁的代价很低,所以被广泛的应用在各种场景下。在开源项目中随处可见。对于concurrentHashmap,以前都是只会用,但是从来没有深入了解和学习,最近抽出时间分析一番。ps:对于concurrentHashmap,JDK1.6和JDK1.7的实现是不一样的,这里主要以JDK1.7的分析为主。
concurrentHashmap和HashMap的区别:#####
concurrentHashmap和HashMap大多数下的使用场景基本一致,但最大的区别就是concurrentHashmap是线程安全的HashMap则不是,在并发的场景下HashMap存在死循环的问题。具体的成因,我会总结一篇这样的笔记。
concurrentHashmap和HashTable的区别:#####
HashTable是一个线程安全的容器类,在HashTable所有方法都是用synchronized关键字修饰的,也就是说它是线程安全的。但是HashTable的性能十分低下,对于每一个操作都要做家锁操作,即使操作的是不同的bucket内的Entry也要全局枷锁,在高并发场景下性能低下。而concurrentHashmap引入了分段锁的概念,对于不同Bucket的操作不需要全局锁来保证线程安全。
concurrentHashmap在JDK1.6和JDK1.7的实现异同点:#####
在学习源码之前,我也看了很多博客,发现上面说法不一,后来对比了代码才知道,原来JDK1.7将concurrentHashmap的实现机制改变了,但是代码确实比原来好懂了一下。
初始化:#####
/**
* The default initial capacity for this table,
* used when not otherwise specified in a constructor.
* 默认的初始化容量
*/
static final int DEFAULT_INITIAL_CAPACITY = 16;
/**
* The default load factor for this table, used when not
* otherwise specified in a constructor.
* 默认负载因子
*/
static final float DEFAULT_LOAD_FACTOR = 0.75f;
/**
* The default concurrency level for this table, used when not
* otherwise specified in a constructor.
* 默认的并发等级
*/
static final int DEFAULT_CONCURRENCY_LEVEL = 16;
/**
* The maximum capacity, used if a higher value is implicitly
* specified by either of the constructors with arguments. MUST
* be a power of two <= 1<<30 to ensure that entries are indexable
* using ints.
* 最大容量
*/
static final int MAXIMUM_CAPACITY = 1 << 30;
/**
* The minimum capacity for per-segment tables. Must be a power
* of two, at least two to avoid immediate resizing on next use
* after lazy construction.
* 一个Segment中Table数组最小长度为2
*/
static final int MIN_SEGMENT_TABLE_CAPACITY = 2;
/**
* The maximum number of segments to allow; used to bound
* constructor arguments. Must be power of two less than 1 << 24.
* Segment的最大数
*/
static final int MAX_SEGMENTS = 1 << 16; // slightly conservative
/**
* Creates a new, empty map with the specified initial
* capacity, load factor and concurrency level.
*
* @param initialCapacity the initial capacity. The implementation
* performs internal sizing to accommodate this many elements.
* @param loadFactor the load factor threshold, used to control resizing.
* Resizing may be performed when the average number of elements per
* bin exceeds this threshold.
* @param concurrencyLevel the estimated number of concurrently
* updating threads. The implementation performs internal sizing
* to try to accommodate this many threads.
* @throws IllegalArgumentException if the initial capacity is
* negative or the load factor or concurrencyLevel are
* nonpositive.
*/
@SuppressWarnings("unchecked")
public ConcurrentHashMap(int initialCapacity,
float loadFactor, int concurrencyLevel) {
//首先检查入参的有效性
if (!(loadFactor > 0) || initialCapacity < 0 || concurrencyLevel <= 0)
throw new IllegalArgumentException();
//限制并发度
if (concurrencyLevel > MAX_SEGMENTS)
concurrencyLevel = MAX_SEGMENTS;
// Find power-of-two sizes best matching arguments
//Segment的段寻址的因子
int sshift = 0;
//Segments数组的长度
int ssize = 1;
//根据并发等级来确定Segment的数组长度和段段寻址的因子
while (ssize < concurrencyLevel) {
++sshift;
ssize <<= 1;
}
//默认并发等级下ssize为16,sshift为4,这里有一个关系就是2的sshift次方等于ssize,主要是为了计算段的位置
//segmentShift为Segment寻址的偏移量
this.segmentShift = 32 - sshift;
//Segment掩码,ssize为16时,segmentMask为0xFF
this.segmentMask = ssize - 1;
//判断初始化容量的有效性
if (initialCapacity > MAXIMUM_CAPACITY)
initialCapacity = MAXIMUM_CAPACITY;
//计算一个Segment的容量
int c = initialCapacity / ssize;
//保证容量足够。ps: /是整除,所以需要通过下面语句保证
if (c * ssize < initialCapacity)
++c;
//计算Segment中的table容量,最小为2,如果小于c,那么x2
int cap = MIN_SEGMENT_TABLE_CAPACITY;
while (cap < c)
cap <<= 1;
// create segments and segments[0]
//创建一个Segment0,以后以此为镜像,新建Segment
Segment<K,V> s0 =
new Segment<K,V>(loadFactor, (int)(cap * loadFactor),
(HashEntry<K,V>[])new HashEntry[cap]);
//创建Segment数组,长度为ssize
Segment<K,V>[] ss = (Segment<K,V>[])new Segment[ssize];
//用UNSAFE的方法将S0放到ss[0],相当于初始化ss
UNSAFE.putOrderedObject(ss, SBASE, s0); // ordered write of segments[0]
this.segments = ss;
}
ConcurrentHashmap的结构图:#####
Paste_Image.png元素定位:#####
初始化之后,我们需要看看concurrentHashmap是怎么定位元素的,比较关键的是hash算法。
/**
* Applies a supplemental hash function to a given hashCode, which
* defends against poor quality hash functions. This is critical
* because ConcurrentHashMap uses power-of-two length hash tables,
* that otherwise encounter collisions for hashCodes that do not
* differ in lower or upper bits.
*/
private int hash(Object k) {
int h = hashSeed;
if ((0 != h) && (k instanceof String)) {
return sun.misc.Hashing.stringHash32((String) k);
}
h ^= k.hashCode();
// Spread bits to regularize both segment and index locations,
// using variant of single-word Wang/Jenkins hash.
h += (h << 15) ^ 0xffffcd7d;
h ^= (h >>> 10);
h += (h << 3);
h ^= (h >>> 6);
h += (h << 2) + (h << 14);
return h ^ (h >>> 16);
}
看到这里,绝大多数人都和我一样是懵逼的,的确我现在也没弄明白是什么逻辑,但是这里有一个疑问,就是Object本身是有hashcode,那么为什么不用Object的HashCode呢?看过《算法导论》的人应该明白,这种算法可能是有问题的,那就是在hash取模的时候,主要是根据后几位确定取模之后的index,所以会很不均匀。所以需要重新设计hash算法。
put的实现:#####
在了解了重新设计的Hashcode之后,我们需要知道是怎么根据hash定位到Segment和Segment里面table的索引。那么我们通过学习put方法,附带看一下元素定位的规则:
/**
* Maps the specified key to the specified value in this table.
* Neither the key nor the value can be null.
*
* <p> The value can be retrieved by calling the <tt>get</tt> method
* with a key that is equal to the original key.
*
* @param key key with which the specified value is to be associated
* @param value value to be associated with the specified key
* @return the previous value associated with <tt>key</tt>, or
* <tt>null</tt> if there was no mapping for <tt>key</tt>
* @throws NullPointerException if the specified key or value is null
*/
@SuppressWarnings("unchecked")
public V put(K key, V value) {
Segment<K,V> s;
if (value == null)
throw new NullPointerException();
int hash = hash(key);
//定位Segment,让Hash右移动segmentShift位,默认情况下就是28位(总长32位),之后和segmentMask(0XFF)做与操作,得到段的索引
int j = (hash >>> segmentShift) & segmentMask;
//利用UNSAFE.getObject中的方法获取到目标的Segment。
if ((s = (Segment<K,V>)UNSAFE.getObject // nonvolatile; recheck
(segments, (j << SSHIFT) + SBASE)) == null) // in ensureSegment
//如果没有取到目标Segment,所以需要保证能取到这个Segment,没有的话创建一个Segment
s = ensureSegment(j);
//代理到Segment的put方法
return s.put(key, hash, value, false);
}
上面的代码中其实是有一些点比较难理解,首先是(Segment<K,V>)UNSAFE.getObject(segments, (j << SSHIFT) + SBASE)),
UNSAFE这种用法是在JDK1.6中没有的,主要是利用Native方法来快速的定位元素。看下SSHIFT和SBASE。
// Unsafe mechanics
private static final sun.misc.Unsafe UNSAFE;
private static final long SBASE;
private static final int SSHIFT;
private static final long TBASE;
private static final int TSHIFT;
private static final long HASHSEED_OFFSET;
static {
int ss, ts;
try {
UNSAFE = sun.misc.Unsafe.getUnsafe();
Class tc = HashEntry[].class;
Class sc = Segment[].class;
TBASE = UNSAFE.arrayBaseOffset(tc);
SBASE = UNSAFE.arrayBaseOffset(sc);
ts = UNSAFE.arrayIndexScale(tc);
ss = UNSAFE.arrayIndexScale(sc);
HASHSEED_OFFSET = UNSAFE.objectFieldOffset(
ConcurrentHashMap.class.getDeclaredField("hashSeed"));
} catch (Exception e) {
throw new Error(e);
}
if ((ss & (ss-1)) != 0 || (ts & (ts-1)) != 0)
throw new Error("data type scale not a power of two");
SSHIFT = 31 - Integer.numberOfLeadingZeros(ss);
TSHIFT = 31 - Integer.numberOfLeadingZeros(ts);
}
这里我是有一些迷惑的,SBASE是基址,但是SSHIFT是什么其实我是不理解的,但是猜测应该是一种计算偏移量的方式(ps:如果有明白的大神,请留言我)。这样就获得了指定索引的Segment。
还有一个点是:ensureSegment()
/**
* Returns the segment for the given index, creating it and
* recording in segment table (via CAS) if not already present.
*
* @param k the index
* @return the segment
*/
@SuppressWarnings("unchecked")
private Segment<K,V> ensureSegment(int k) {
final Segment<K,V>[] ss = this.segments;
long u = (k << SSHIFT) + SBASE; // raw offset
Segment<K,V> seg;
//getObjectVolatile是以Volatile的方式获得目标的Segment,Volatile是为了保证可见性。
if ((seg = (Segment<K,V>)UNSAFE.getObjectVolatile(ss, u)) == null) {
//如果没有取到,那么证明指定的Segment不存在,那么需要新建Segment,方式是以ss[0]为镜像创建。
Segment<K,V> proto = ss[0]; // use segment 0 as prototype
int cap = proto.table.length;
float lf = proto.loadFactor;
int threshold = (int)(cap * lf);
HashEntry<K,V>[] tab = (HashEntry<K,V>[])new HashEntry[cap];
if ((seg = (Segment<K,V>)UNSAFE.getObjectVolatile(ss, u))
== null) { // 再次检查
Segment<K,V> s = new Segment<K,V>(lf, threshold, tab);//创建新Segment
//以CAS的方式,将新建的Segment,set到指定的位置。
while ((seg = (Segment<K,V>)UNSAFE.getObjectVolatile(ss, u))
== null) {
if (UNSAFE.compareAndSwapObject(ss, u, null, seg = s))
break;
}
}
}
return seg;
}
上面的代码就是保证,在put之前,要保证目标的Segment是存在的,不存在需要创建一个Segment。
put方法代理到了Segment的put方法,Segment extends 了ReentrantLock,以至于它能当做一个Lock使用。那么我们看一下Segment的put的实现:
final V put(K key, int hash, V value, boolean onlyIfAbsent) {
//因为put操作会改变整体的结构,所以需要保证段的线程安全性,所以首先tryLock
HashEntry<K,V> node = tryLock() ? null :
scanAndLockForPut(key, hash, value);
V oldValue;
try {
//新建tab引用,避免直接引用Volatile导致性能损耗,
HashEntry<K,V>[] tab = table;
int index = (tab.length - 1) & hash;
//Volatile读,保证可见性
HashEntry<K,V> first = entryAt(tab, index);
for (HashEntry<K,V> e = first;;) {
if (e != null) {
K k;
//遍历HashEntry数组,寻找可替换的HashEntry
if ((k = e.key) == key ||
(e.hash == hash && key.equals(k))) {
oldValue = e.value;
if (!onlyIfAbsent) {
e.value = value;
++modCount;
}
break;
}
e = e.next;
}
else {
//如果不存在可替换的HashEntry,如果在scanAndLockForPut中建立了此Node直接SetNext,追加到链表头
if (node != null)
node.setNext(first);
else
//如果没有则新建一个Node,添加到链表头
node = new HashEntry<K,V>(hash, key, value, first);
//容量计数+1
int c = count + 1;
//如果容量不足,那么扩容
if (c > threshold && tab.length < MAXIMUM_CAPACITY)
rehash(node);
else
//以Volatile写的方式,替换tab[index]的引用
setEntryAt(tab, index, node);
++modCount;
count = c;
oldValue = null;
break;
}
}
} finally {
unlock();
}
return oldValue;
}
put方法是做了加锁操作的,所以不用过多的考虑线程安全的问题,但是get操作为了保证性能是没有加锁的,所以需要尽量的保证数据的可见性,能让get得到最新的数据。上面的方法里有一点是比较难理解的:
1.scanAndLockForPut(key, hash, value)在做什么:
/**
* Scans for a node containing given key while trying to
* acquire lock, creating and returning one if not found. Upon
* return, guarantees that lock is held. UNlike in most
* methods, calls to method equals are not screened: Since
* traversal speed doesn't matter, we might as well help warm
* up the associated code and accesses as well.
*
* @return a new node if key not found, else null
*/
private HashEntry<K,V> scanAndLockForPut(K key, int hash, V value) {
HashEntry<K,V> first = entryForHash(this, hash);
HashEntry<K,V> e = first;
HashEntry<K,V> node = null;
int retries = -1; // negative while locating node
while (!tryLock()) {
HashEntry<K,V> f; // to recheck first below
if (retries < 0) {
if (e == null) {
if (node == null) // speculatively create node
node = new HashEntry<K,V>(hash, key, value, null);
retries = 0;
}
else if (key.equals(e.key))
retries = 0;
else
e = e.next;
}
else if (++retries > MAX_SCAN_RETRIES) {
lock();
break;
}
else if ((retries & 1) == 0 &&
(f = entryForHash(this, hash)) != first) {
e = first = f; // re-traverse if entry changed
retries = -1;
}
}
return node;
}
从上面的逻辑可以看出来,其实就是在获取锁的时候顺便检查一下指定index的HashEntry有没有变化,同时如果目标节点不存在创建一个新的目标节点。但是为什么做这样的检查,查了很多资料结合注释理解是,为了事先做数据的缓存,让这些数据缓存在CPU的cache中,这样后续在使用时能避免Cache missing。ps:scanAndLockForPut有个孪生兄弟scanAndLock,作用都差不多。
和JDK1.6的实现的不同:
1. V put(K key, int hash, V value, boolean onlyIfAbsent) {
2. lock();
3. try {
4. int c = count;
5. if (c++ > threshold) // ensure capacity
6. rehash();
7. HashEntry<K,V>[] tab = table;
8. int index = hash & (tab.length - 1);
9. HashEntry<K,V> first = tab[index];
10. HashEntry<K,V> e = first;
11. while (e != null && (e.hash != hash || !key.equals(e.key)))
12. e = e.next;
13.
14. V oldValue;
15. if (e != null) {
16. oldValue = e.value;
17. if (!onlyIfAbsent)
18. e.value = value;
19. }
20. else {
21. oldValue = null;
22. ++modCount;
23. tab[index] = new HashEntry<K,V>(key, hash, first, value);
24. count = c; // write-volatile
25. }
26. return oldValue;
27. } finally {
28. unlock();
29. }
30. }
JDK1.6的实现和JDK1.7的实现比较相似,但是主要区别是,没有使用一些UNSAFE的方法去保证内存的可见性,而是通过一个Volatile变量——count去实现。在开始的时候读count保证lock的内存语意,最后写count实现unlock的内存语意。
但是这里存在一个问题,new HashEntry操作存在重排序问题,导致在getValue的时候tab[index]不为null,但是value为null。
get方法:#####
看过了put方法之后,接下来我们看比较关键的方法get():
/**
* Returns the value to which the specified key is mapped,
* or {@code null} if this map contains no mapping for the key.
*
* <p>More formally, if this map contains a mapping from a key
* {@code k} to a value {@code v} such that {@code key.equals(k)},
* then this method returns {@code v}; otherwise it returns
* {@code null}. (There can be at most one such mapping.)
*
* @throws NullPointerException if the specified key is null
*/
public V get(Object key) {
Segment<K,V> s; // manually integrate access methods to reduce overhead
HashEntry<K,V>[] tab;
int h = hash(key);
long u = (((h >>> segmentShift) & segmentMask) << SSHIFT) + SBASE;
if ((s = (Segment<K,V>)UNSAFE.getObjectVolatile(segments, u)) != null &&
(tab = s.table) != null) {
for (HashEntry<K,V> e = (HashEntry<K,V>) UNSAFE.getObjectVolatile
(tab, ((long)(((tab.length - 1) & h)) << TSHIFT) + TBASE);
e != null; e = e.next) {
K k;
if ((k = e.key) == key || (e.hash == h && key.equals(k)))
return e.value;
}
}
return null;
}
可以看出来,get方法很简单,同时get是没有加锁的,那么get是如何保证可见性的呢?首先获取指定index的Segment,利用getObjectVolatile获取指定index的first HashEntry,之后遍历HashEntry链表,这里比较关键的是HashEntry的数据结构:
volatile V value;
volatile HashEntry<K,V> next;
两个变量是volatile的,也就是说,两个变量的读写能保证数据的可见性。
所以在变量HashEntry时,总能保证得到最新的值。
JKD1.6的get方法的实现:
1. V get(Object key, int hash) {
2. if (count != 0) { // read-volatile 当前桶的数据个数是否为0
3. HashEntry<K,V> e = getFirst(hash); 得到头节点
4. while (e != null) {
5. if (e.hash == hash && key.equals(e.key)) {
6. V v = e.value;
7. if (v != null)
8. return v;
9. return readValueUnderLock(e); // recheck
10. }
11. e = e.next;
12. }
13. }
14. return null;
15. }
首先是读取count变量,因为内存的可见性,总是能返回最新的结构,但是对于getFirst可能得到的是过时的HashEntry。接下来获取到HashEntry之后getValue。但是这里为什么要做一个value的判空,原因就是上一步put的重排序问题,如果为null,那么只能加锁,加锁之后进行重新读取。但是这样确实会带来一些开销。
为什么JDK1.6的实现是弱一致性的?#####
这里比较重要的一点就是,为什么JDK1.6的是弱一致性的?因为JDK1.6的所有可见性都是以count实现的,当put和get并发时,get可能获取不到最新的结果,这就是JDK1.6中ConcurrentHashMap弱一致性问题,主要问题是 tab[index] = new HashEntry<K,V>(key, hash, first, value);不一定 happened before getFirst(hash);盗图一张:
Paste_Image.png而JDK1.7的实现,对于每一个操作都是Volatile变量的操作,能保证线程之间的可见性,所以不存在弱一致性的问题。
remove方法:#####
看了put方法之后,接下来看一下同样能改变结构的remove方法:
/**
* Removes the key (and its corresponding value) from this map.
* This method does nothing if the key is not in the map.
*
* @param key the key that needs to be removed
* @return the previous value associated with <tt>key</tt>, or
* <tt>null</tt> if there was no mapping for <tt>key</tt>
* @throws NullPointerException if the specified key is null
*/
public V remove(Object key) {
int hash = hash(key);
Segment<K,V> s = segmentForHash(hash);
return s == null ? null : s.remove(key, hash, null);
}
final V remove(Object key, int hash, Object value) {
if (!tryLock())
scanAndLock(key, hash);
V oldValue = null;
try {
HashEntry<K,V>[] tab = table;
int index = (tab.length - 1) & hash;
HashEntry<K,V> e = entryAt(tab, index);
HashEntry<K,V> pred = null;
while (e != null) {
K k;
HashEntry<K,V> next = e.next;
if ((k = e.key) == key ||
(e.hash == hash && key.equals(k))) {
V v = e.value;
if (value == null || value == v || value.equals(v)) {
if (pred == null)
setEntryAt(tab, index, next);
else
pred.setNext(next);
++modCount;
--count;
oldValue = v;
}
break;
}
pred = e;
e = next;
}
} finally {
unlock();
}
return oldValue;
}
remove方法,同样是代理到Segment的remove,在这里调用了scanAndLock方法,这个在前面已经说过了。这里的remove逻辑是比较简单的就不赘述了。
size方法:#####
接下来看最后一个方法,也是一个跨Segment的方法:
/**
* Returns the number of key-value mappings in this map. If the
* map contains more than <tt>Integer.MAX_VALUE</tt> elements, returns
* <tt>Integer.MAX_VALUE</tt>.
*
* @return the number of key-value mappings in this map
*/
public int size() {
// Try a few times to get accurate count. On failure due to
// continuous async changes in table, resort to locking.
final Segment<K,V>[] segments = this.segments;
int size;
boolean overflow; // true if size overflows 32 bits
long sum; // sum of modCounts
long last = 0L; // previous sum
int retries = -1; // first iteration isn't retry
try {
for (;;) {
if (retries++ == RETRIES_BEFORE_LOCK) {
for (int j = 0; j < segments.length; ++j)
ensureSegment(j).lock(); // force creation
}
sum = 0L;
size = 0;
overflow = false;
for (int j = 0; j < segments.length; ++j) {
Segment<K,V> seg = segmentAt(segments, j);
if (seg != null) {
sum += seg.modCount;
int c = seg.count;
if (c < 0 || (size += c) < 0)
overflow = true;
}
}
if (sum == last)
break;
last = sum;
}
} finally {
if (retries > RETRIES_BEFORE_LOCK) {
for (int j = 0; j < segments.length; ++j)
segmentAt(segments, j).unlock();
}
}
return overflow ? Integer.MAX_VALUE : size;
}
size是一个跨Segment的操作,所以避免不了多个锁的获取,这里主要是通过如下方法进行所有锁的获取:
if (retries++ == RETRIES_BEFORE_LOCK) {
for (int j = 0; j < segments.length; ++j)
ensureSegment(j).lock(); // force creation
}
获取所有锁之后,对每一个Segment的size获取,最后相加返回。
参考链接:#####
为什么ConcurrentHashMap是弱一致的
Under The Covers Of Concurrent Hash Map
Java集合---ConcurrentHashMap原理分析
Java Core系列之ConcurrentHashMap实现(JDK 1.7)
探索 ConcurrentHashMap 高并发性的实现机制
网友评论