同步wx订阅号(arXiv每日论文速递)
cs.LG 方向,今日共计58篇
【1】 Promoting Coordination through Policy Regularization in Multi-Agent Reinforcement Learning
标题:多Agent强化学习中通过政策正规化促进协调
作者: Paul Barde, Christopher Pal
链接:https://arxiv.org/abs/1908.02269
【2】 BlurNet: Defense by Filtering the Feature Maps
标题:BlurNet:过滤特征图防御
作者: Ravi Raju, Mikko Lipasti
链接:https://arxiv.org/abs/1908.02256
【3】 Classification of Hand Movements from EEG using a Deep Attention-based LSTM Network
标题:基于深度注意的LSTM网络对EEG手部运动的分类
作者: Guangyi Zhang, Ali Etemad
链接:https://arxiv.org/abs/1908.02252
【4】 Bayesian Network Based Label Correlation Analysis For Multi-label Classifier Chain
标题:基于贝叶斯网络的多标签分类器链标签相关性分析
作者: Ran Wang, Sam Kwong
链接:https://arxiv.org/abs/1908.02172
【5】 Robby is Not a Robber (anymore): On the Use of Institutions for Learning Normative Behavior
标题:Robby不是强盗(不再):关于学习规范行为的机构的使用
作者: Stevan Tomic, Alessandro Saffiotti
链接:https://arxiv.org/abs/1908.02138
【6】 Model inference for Ordinary Differential Equations by parametric polynomial kernel regression
标题:常微分方程的参数多项式核回归模型推断
作者: David K. E. Green, Filip Rindler
备注:23 pages, 7 figures. Submission to 3rd International Conference on Uncertainty Quantification in Computational Sciences and Engineering (UNCECOMP), Crete, Greece, 24-26 June 2019
链接:https://arxiv.org/abs/1908.02105
【7】 Hermitian matrices for clustering directed graphs: insights and applications
标题:用于聚类有向图的Hermitian矩阵:见解和应用
作者: Mihai Cucuringu, Luca Zanetti
链接:https://arxiv.org/abs/1908.02096
【8】 Sparse hierarchical representation learning on molecular graphs
标题:分子图的稀疏层次表示学习
作者: Matthias Bal, Vid Stojevic
备注:4 pages, 2 figures, accepted as a DLG 2019 workshop paper at KDD 2019
链接:https://arxiv.org/abs/1908.02065
【9】 Fully-automated patient-level malaria assessment on field-prepared thin blood film microscopy images, including Supplementary Information
标题:全自动对现场准备的薄血膜显微镜图像进行的患者级疟疾评估,包括补充信息
作者: Charles B. Delahunt, Courosh Mehanian
链接:https://arxiv.org/abs/1908.01901
【10】 Learning Stages: Phenomenon, Root Cause, Mechanism Hypothesis, and Implications
标题:学习阶段:现象,根源,机制假设和启示
作者: Kaichao You, Jianmin Wang
链接:https://arxiv.org/abs/1908.01878
【11】 Animal Wildlife Population Estimation Using Social Media Images Collections
标题:利用社交媒体图片集估计动物野生动物数量
作者: Matteo Foglio, Tanya Berger-Wolf
备注:KDD19 Workshop on Data Mining and AI for Conservation, Earth Day (5 August 2019), Anchorage, AL
链接:https://arxiv.org/abs/1908.01875
【12】 Efficient Approximation of Deep ReLU Networks for Functions on Low Dimensional Manifolds
标题:低维流形上函数的Deep Relu网络的有效逼近
作者: Minshuo Chen, Tuo Zhao
链接:https://arxiv.org/abs/1908.01842
【13】 EdgeNet: A novel approach for Arabic numeral classification
标题:EdgeNet:一种新的阿拉伯数字分类方法
作者: S. M. A. Sharif, S. M. Nadim Uddin
链接:https://arxiv.org/abs/1908.02254
【14】 On Convergence of Distributed Approximate Newton Methods: Globalization, Sharper Bounds and Beyond
标题:关于分布近似牛顿方法的收敛性:全球化,Sharper界及超越
作者: Xiao-Tong Yuan, Ping Li
链接:https://arxiv.org/abs/1908.02246
【15】 Koopman Representations of Dynamic Systems with Control
标题:带控制的动态系统的Koopman表示
作者: Craig Bakker, Kathleen E. Nowak
链接:https://arxiv.org/abs/1908.02233
【16】 MetaAdvDet: Towards Robust Detection of Evolving Adversarial Attacks
标题:MetaAdvDet:朝着稳健检测进化中的对抗性攻击
作者: Chen Ma, Dan Zeng
备注:10 pages, 2 figures, accepted as the conference paper of Proceedings of the 27th ACM International Conference on Multimedia (MM'19)
链接:https://arxiv.org/abs/1908.02199
【17】 An attempt at beating the 3D U-Net
标题:一次击败3DU-NET的尝试
作者: Fabian Isensee, Klaus H. Maier-Hein
链接:https://arxiv.org/abs/1908.02182
【18】 Abnormality Detection in Musculoskeletal Radiographs with Convolutional Neural Networks(Ensembles) and Performance Optimization
标题:基于卷积神经网络(集成)的肌肉骨骼X线片异常检测及性能优化
作者: Dennis Banga, Peter Waiganjo
链接:https://arxiv.org/abs/1908.02170
【19】 Semiparametric Wavelet-based JPEG IV Estimator for endogenously truncated data
标题:基于半参数小波的内生截断数据的JPEG IV估计
作者: Nir Billfeld, Moshe Kim
备注:18 pages
链接:https://arxiv.org/abs/1908.02166
【20】 Deep Self-Learning From Noisy Labels
标题:从噪声标签中进行深度自学习
作者: Jiangfan Han, Xiaogang Wang
备注:Accepted by IEEE International Conference on Computer Vision(ICCV) 2019
链接:https://arxiv.org/abs/1908.02160
【21】 Knowledge Query Network: How Knowledge Interacts with Skills
标题:知识查询网络:知识与技能的互动
作者: Jinseok Lee, Dit-Yan Yeung
备注:10 pages, Learning Analytics & Knowledge 2019
链接:https://arxiv.org/abs/1908.02146
【22】 Bayesian Batch Active Learning as Sparse Subset Approximation
标题:基于稀疏子集近似的贝叶斯批量主动学习
作者: Robert Pinsler, José Miguel Hernández-Lobato
链接:https://arxiv.org/abs/1908.02144
【23】 Adapting SQuaRE for Quality Assessment of Artificial Intelligence Systems
标题:人工智能系统质量评价的自适应平方
作者: Hiroshi Kuwajima, Fuyuki Ishikawa
链接:https://arxiv.org/abs/1908.02134
【24】 Deep learning research landscape & roadmap in a nutshell: past, present and future -- Towards deep cortical learning
标题:深度学习研究景观与路线图简而言之:过去,现在和未来-走向深度皮层学习
作者: Aras R. Dargazany
链接:https://arxiv.org/abs/1908.02130
【25】 Aligning Linguistic Words and Visual Semantic Units for Image Captioning
标题:用于图像字幕的语言单词和视觉语义单元的对齐
作者: Longteng Guo, Hanqing Lu
备注:8 pages, 5 figures. Accepted by ACM MM 2019
链接:https://arxiv.org/abs/1908.02127
【26】 Architecture-aware Network Pruning for Vision Quality Applications
标题:用于视觉质量应用的体系结构感知网络修剪
作者: Wei-Ting Wang, Yi-Min Tsai
备注:Accepted to be Published in the 26th IEEE International Conference on Image Processing (ICIP 2019). Updated to contain the IEEE copyright notice
链接:https://arxiv.org/abs/1908.02125
【27】 Practical Speech Recognition with HTK
标题:基于HTK的实用语音识别
作者: Zulkarnaen Hatala
链接:https://arxiv.org/abs/1908.02119
【28】 AttentionBoost: Learning What to Attend by Boosting Fully Convolutional Networks
标题:AttentionBoost:通过提升完全卷积网络来学习参加什么
作者: Gozde Nur Gunesli, Cigdem Gunduz-Demir
链接:https://arxiv.org/abs/1908.02095
【29】 Age of Information-Aware Radio Resource Management in Vehicular Networks: A Proactive Deep Reinforcement Learning Perspective
标题:车载网络信息感知无线资源管理时代:主动深度强化学习视角
作者: Xianfu Chen, Mehdi Bennis
链接:https://arxiv.org/abs/1908.02047
【30】 Batch Recurrent Q-Learning for Backchannel Generation Towards Engaging Agents
标题:面向参与主体的反向通道生成的批量递归Q-学习
作者: Nusrah Hussain, Yucel Yemez
备注:8 pages, 4 figures. arXiv admin note: substantial text overlap with arXiv:1908.01618
链接:https://arxiv.org/abs/1908.02037
【31】 Full-Stack Filters to Build Minimum Viable CNNs
标题:构建最小可行CNN的全堆栈过滤器
作者: Kai Han, Chang Xu
链接:https://arxiv.org/abs/1908.02023
【32】 Multi-view Deep Subspace Clustering Networks
标题:多视图深子空间聚类网络
作者: Pengfei Zhu, Qinghua Hu
链接:https://arxiv.org/abs/1908.01978
【33】 Self-Balanced Dropout
标题:自平衡掉线
作者: Shen Li, Zhengdong Lu
链接:https://arxiv.org/abs/1908.01968
【34】 Dialog State Tracking: A Neural Reading Comprehension Approach
标题:对话状态跟踪:一种神经阅读理解方法
作者: Shuyang Gao, Dilek Hakkani-Tur
备注:10 pages, to appear in Special Interest Group on Discourse and Dialogue (SIGDIAL) 2019
链接:https://arxiv.org/abs/1908.01946
【35】 Policy Evaluation with Latent Confounders via Optimal Balance
标题:通过最优平衡进行具有潜在混淆者的策略评估
作者: Andrew Bennett, Nathan Kallus
链接:https://arxiv.org/abs/1908.01920
【36】 DoorGym: A Scalable Door Opening Environment And Baseline Agent
标题:DoorGym:一个可扩展的开门环境和基线代理
作者: Yusuke Urakami, Pieter Abbeel
链接:https://arxiv.org/abs/1908.01887
【37】 Backronym
标题:回缩
作者: Arip Asadulaev
链接:https://arxiv.org/abs/1908.01874
【38】 Attention Control with Metric Learning Alignment for Image Set-based Recognition
标题:基于图像集识别的基于度量学习对齐的注意控制
作者: Xiaofeng Liu, B.V.K Vijaya Kumar
备注:Accepted to IEEE T-IFS (Extension of ECCV 2018 paper: Dependency-aware Attention Control for Unconstrained Face Recognition with Image Sets). arXiv admin note: substantial text overlap with arXiv:1907.03030; text overlap with arXiv:1707.00130 by other authors
链接:https://arxiv.org/abs/1908.01872
【39】 Unsupervised Representations of Pollen in Bright-Field Microscopy
标题:明场显微镜中花粉的无监督表示
作者: Peter He, Alexis Gkantiragas
备注:Accepted at the Workshop on Computational Biology at the International Conference on Machine Learning (ICML) in Long Beach, CA, USA on June 14, 2019
链接:https://arxiv.org/abs/1908.01866
【40】 DELTA: A DEep learning based Language Technology plAtform
标题:Delta:一个基于深度学习的语言技术平台
作者: Kun Han, Xiangang Li
链接:https://arxiv.org/abs/1908.01853
【41】 Self-Knowledge Distillation in Natural Language Processing
标题:自然语言处理中的自我知识提取
作者: Sangchul Hahn, Heeyoul Choi
链接:https://arxiv.org/abs/1908.01851
【42】 GEAR: Graph-based Evidence Aggregating and Reasoning for Fact Verification
标题:Gear:基于图的事实验证证据聚合与推理
作者: Jie Zhou, Maosong Sun
备注:Accepted by ACL 2019
链接:https://arxiv.org/abs/1908.01843
【43】 Multi-turn Dialogue Response Generation with Autoregressive Transformer Models
标题:基于自回归变压器模型的多匝对话响应生成
作者: Oluwatobi Olabiyi, Erik T. Mueller
链接:https://arxiv.org/abs/1908.01841
【44】 A Translate-Edit Model for Natural Language Question to SQL Query Generation on Multi-relational Healthcare Data
标题:多关系医疗数据自然语言问题到SQL查询生成的翻译编辑模型
作者: Ping Wang, Chandan K. Reddy
链接:https://arxiv.org/abs/1908.01839
【45】 Structured Knowledge Discovery from Massive Text Corpus
标题:海量文本语料库中的结构化知识发现
作者: Chenwei Zhang
备注:PhD Thesis, University of Illinois at Chicago, July 2019
链接:https://arxiv.org/abs/1908.01837
【46】 Word Sense Disambiguation using Diffusion Kernel PCA
标题:基于扩散核PCA的词义消歧
作者: Bilge Sipal, Nurullah Demirci
链接:https://arxiv.org/abs/1908.01832
【47】 Dialogue Act Classification in Group Chats with DAG-LSTMs
标题:DAG-LSTM群聊中的对话行为分类
作者: Ozan İrsoy, Camilo Ortiz
备注:Appeared in SIGIR 2019 Workshop on Conversational Interaction Systems
链接:https://arxiv.org/abs/1908.01821
【48】 An Unsupervised Character-Aware Neural Approach to Word and Context Representation Learning
标题:一种无监督的字符感知神经方法在单词和上下文表征学习中的应用
作者: Giuseppe Marra, Marco Maggini
链接:https://arxiv.org/abs/1908.01819
【49】 Sparsity Emerges Naturally in Neural Language Models
标题:稀疏性在神经语言模型中自然出现
作者: Naomi Saphra, Adam Lopez
备注:Published in the ICML 2019 Workshop on Identifying and Understanding Deep Learning Phenomena: this https URL
链接:https://arxiv.org/abs/1908.01817
【50】 MacNet: Transferring Knowledge from Machine Comprehension to Sequence-to-Sequence Models
标题:MacNet:将知识从机器理解转移到序列模型
作者: Boyuan Pan, Xiaofei He
备注:Accepted In NeurIPS 2018
链接:https://arxiv.org/abs/1908.01816
【51】 Pars-ABSA: An Aspect-based Sentiment Analysis Dataset in Persian
标题:PARS-ABSA:波斯语基于方面的情感分析数据集
作者: Taha Shangipour Ataei, Sauleh Eetemadi
链接:https://arxiv.org/abs/1908.01815
【52】 Answering Questions about Data Visualizations using Efficient Bimodal Fusion
标题:使用有效的双峰融合回答有关数据可视化的问题
作者: Kushal Kafle, Christopher Kanan
链接:https://arxiv.org/abs/1908.01801
【53】 Some Developments in Clustering Analysis on Stochastic Processes
标题:随机过程聚类分析的若干进展
作者: Qidi Peng, Ran Zhao
链接:https://arxiv.org/abs/1908.01794
【54】 Attribute-Guided Coupled GAN for Cross-Resolution Face Recognition
标题:用于交叉分辨率人脸识别的属性引导耦合GaN
作者: Veeru Talreja, Nasser M Nasrabadi
链接:https://arxiv.org/abs/1908.01790
【55】 Stochastic data-driven model predictive control using Gaussian processes
标题:基于高斯过程的随机数据驱动模型预测控制
作者: Eric Bradford, Ehecatl Antonio del Rio Chanona
链接:https://arxiv.org/abs/1908.01786
【56】 Stress-Plus-X (SPX) Graph Layout
标题:Stress-Plus-X(SPX)图形布局
作者: Sabin Devkota, Stephen Kobourov
备注:25 pages, 12 figures, accepted in the 27th International Symposium on Graph Drawing and Network Visualization (GD 2019)
链接:https://arxiv.org/abs/1908.01769
【57】 Probabilistic Permutation Invariant Training for Speech Separation
标题:用于语音分离的概率置换不变训练
作者: Midia Yousefi, John H.L. Hansen
备注:Interspeech 2019
链接:https://arxiv.org/abs/1908.01768
【58】 Exploring Neural Net Augmentation to BERT for Question Answering on SQUAD 2.0
标题:探索神经网络增强到BERT在班级2.0答疑中的应用
作者: Suhas Gupta, Eric Hulburd
链接:https://arxiv.org/abs/1908.01767
翻译:腾讯翻译君
机器学习每日论文速递[08.07]
网友评论