美文网首页arXiv daily
机器学习每日论文速递[08.07]

机器学习每日论文速递[08.07]

作者: arXiv每日论文速递 | 来源:发表于2019-08-07 12:48 被阅读26次

    同步wx订阅号(arXiv每日论文速递)

    cs.LG 方向,今日共计58篇

    【1】 Promoting Coordination through Policy Regularization in Multi-Agent Reinforcement Learning
    标题:多Agent强化学习中通过政策正规化促进协调
    作者: Paul Barde, Christopher Pal
    链接:https://arxiv.org/abs/1908.02269

    【2】 BlurNet: Defense by Filtering the Feature Maps
    标题:BlurNet:过滤特征图防御
    作者: Ravi Raju, Mikko Lipasti
    链接:https://arxiv.org/abs/1908.02256

    【3】 Classification of Hand Movements from EEG using a Deep Attention-based LSTM Network
    标题:基于深度注意的LSTM网络对EEG手部运动的分类
    作者: Guangyi Zhang, Ali Etemad
    链接:https://arxiv.org/abs/1908.02252

    【4】 Bayesian Network Based Label Correlation Analysis For Multi-label Classifier Chain
    标题:基于贝叶斯网络的多标签分类器链标签相关性分析
    作者: Ran Wang, Sam Kwong
    链接:https://arxiv.org/abs/1908.02172

    【5】 Robby is Not a Robber (anymore): On the Use of Institutions for Learning Normative Behavior
    标题:Robby不是强盗(不再):关于学习规范行为的机构的使用
    作者: Stevan Tomic, Alessandro Saffiotti
    链接:https://arxiv.org/abs/1908.02138

    【6】 Model inference for Ordinary Differential Equations by parametric polynomial kernel regression
    标题:常微分方程的参数多项式核回归模型推断
    作者: David K. E. Green, Filip Rindler
    备注:23 pages, 7 figures. Submission to 3rd International Conference on Uncertainty Quantification in Computational Sciences and Engineering (UNCECOMP), Crete, Greece, 24-26 June 2019
    链接:https://arxiv.org/abs/1908.02105

    【7】 Hermitian matrices for clustering directed graphs: insights and applications
    标题:用于聚类有向图的Hermitian矩阵:见解和应用
    作者: Mihai Cucuringu, Luca Zanetti
    链接:https://arxiv.org/abs/1908.02096

    【8】 Sparse hierarchical representation learning on molecular graphs
    标题:分子图的稀疏层次表示学习
    作者: Matthias Bal, Vid Stojevic
    备注:4 pages, 2 figures, accepted as a DLG 2019 workshop paper at KDD 2019
    链接:https://arxiv.org/abs/1908.02065

    【9】 Fully-automated patient-level malaria assessment on field-prepared thin blood film microscopy images, including Supplementary Information
    标题:全自动对现场准备的薄血膜显微镜图像进行的患者级疟疾评估,包括补充信息
    作者: Charles B. Delahunt, Courosh Mehanian
    链接:https://arxiv.org/abs/1908.01901

    【10】 Learning Stages: Phenomenon, Root Cause, Mechanism Hypothesis, and Implications
    标题:学习阶段:现象,根源,机制假设和启示
    作者: Kaichao You, Jianmin Wang
    链接:https://arxiv.org/abs/1908.01878

    【11】 Animal Wildlife Population Estimation Using Social Media Images Collections
    标题:利用社交媒体图片集估计动物野生动物数量
    作者: Matteo Foglio, Tanya Berger-Wolf
    备注:KDD19 Workshop on Data Mining and AI for Conservation, Earth Day (5 August 2019), Anchorage, AL
    链接:https://arxiv.org/abs/1908.01875

    【12】 Efficient Approximation of Deep ReLU Networks for Functions on Low Dimensional Manifolds
    标题:低维流形上函数的Deep Relu网络的有效逼近
    作者: Minshuo Chen, Tuo Zhao
    链接:https://arxiv.org/abs/1908.01842

    【13】 EdgeNet: A novel approach for Arabic numeral classification
    标题:EdgeNet:一种新的阿拉伯数字分类方法
    作者: S. M. A. Sharif, S. M. Nadim Uddin
    链接:https://arxiv.org/abs/1908.02254

    【14】 On Convergence of Distributed Approximate Newton Methods: Globalization, Sharper Bounds and Beyond
    标题:关于分布近似牛顿方法的收敛性:全球化,Sharper界及超越
    作者: Xiao-Tong Yuan, Ping Li
    链接:https://arxiv.org/abs/1908.02246

    【15】 Koopman Representations of Dynamic Systems with Control
    标题:带控制的动态系统的Koopman表示
    作者: Craig Bakker, Kathleen E. Nowak
    链接:https://arxiv.org/abs/1908.02233

    【16】 MetaAdvDet: Towards Robust Detection of Evolving Adversarial Attacks
    标题:MetaAdvDet:朝着稳健检测进化中的对抗性攻击
    作者: Chen Ma, Dan Zeng
    备注:10 pages, 2 figures, accepted as the conference paper of Proceedings of the 27th ACM International Conference on Multimedia (MM'19)
    链接:https://arxiv.org/abs/1908.02199

    【17】 An attempt at beating the 3D U-Net
    标题:一次击败3DU-NET的尝试
    作者: Fabian Isensee, Klaus H. Maier-Hein
    链接:https://arxiv.org/abs/1908.02182

    【18】 Abnormality Detection in Musculoskeletal Radiographs with Convolutional Neural Networks(Ensembles) and Performance Optimization
    标题:基于卷积神经网络(集成)的肌肉骨骼X线片异常检测及性能优化
    作者: Dennis Banga, Peter Waiganjo
    链接:https://arxiv.org/abs/1908.02170

    【19】 Semiparametric Wavelet-based JPEG IV Estimator for endogenously truncated data
    标题:基于半参数小波的内生截断数据的JPEG IV估计
    作者: Nir Billfeld, Moshe Kim
    备注:18 pages
    链接:https://arxiv.org/abs/1908.02166

    【20】 Deep Self-Learning From Noisy Labels
    标题:从噪声标签中进行深度自学习
    作者: Jiangfan Han, Xiaogang Wang
    备注:Accepted by IEEE International Conference on Computer Vision(ICCV) 2019
    链接:https://arxiv.org/abs/1908.02160

    【21】 Knowledge Query Network: How Knowledge Interacts with Skills
    标题:知识查询网络:知识与技能的互动
    作者: Jinseok Lee, Dit-Yan Yeung
    备注:10 pages, Learning Analytics & Knowledge 2019
    链接:https://arxiv.org/abs/1908.02146

    【22】 Bayesian Batch Active Learning as Sparse Subset Approximation
    标题:基于稀疏子集近似的贝叶斯批量主动学习
    作者: Robert Pinsler, José Miguel Hernández-Lobato
    链接:https://arxiv.org/abs/1908.02144

    【23】 Adapting SQuaRE for Quality Assessment of Artificial Intelligence Systems
    标题:人工智能系统质量评价的自适应平方
    作者: Hiroshi Kuwajima, Fuyuki Ishikawa
    链接:https://arxiv.org/abs/1908.02134

    【24】 Deep learning research landscape & roadmap in a nutshell: past, present and future -- Towards deep cortical learning
    标题:深度学习研究景观与路线图简而言之:过去,现在和未来-走向深度皮层学习
    作者: Aras R. Dargazany
    链接:https://arxiv.org/abs/1908.02130

    【25】 Aligning Linguistic Words and Visual Semantic Units for Image Captioning
    标题:用于图像字幕的语言单词和视觉语义单元的对齐
    作者: Longteng Guo, Hanqing Lu
    备注:8 pages, 5 figures. Accepted by ACM MM 2019
    链接:https://arxiv.org/abs/1908.02127

    【26】 Architecture-aware Network Pruning for Vision Quality Applications
    标题:用于视觉质量应用的体系结构感知网络修剪
    作者: Wei-Ting Wang, Yi-Min Tsai
    备注:Accepted to be Published in the 26th IEEE International Conference on Image Processing (ICIP 2019). Updated to contain the IEEE copyright notice
    链接:https://arxiv.org/abs/1908.02125

    【27】 Practical Speech Recognition with HTK
    标题:基于HTK的实用语音识别
    作者: Zulkarnaen Hatala
    链接:https://arxiv.org/abs/1908.02119

    【28】 AttentionBoost: Learning What to Attend by Boosting Fully Convolutional Networks
    标题:AttentionBoost:通过提升完全卷积网络来学习参加什么
    作者: Gozde Nur Gunesli, Cigdem Gunduz-Demir
    链接:https://arxiv.org/abs/1908.02095

    【29】 Age of Information-Aware Radio Resource Management in Vehicular Networks: A Proactive Deep Reinforcement Learning Perspective
    标题:车载网络信息感知无线资源管理时代:主动深度强化学习视角
    作者: Xianfu Chen, Mehdi Bennis
    链接:https://arxiv.org/abs/1908.02047

    【30】 Batch Recurrent Q-Learning for Backchannel Generation Towards Engaging Agents
    标题:面向参与主体的反向通道生成的批量递归Q-学习
    作者: Nusrah Hussain, Yucel Yemez
    备注:8 pages, 4 figures. arXiv admin note: substantial text overlap with arXiv:1908.01618
    链接:https://arxiv.org/abs/1908.02037

    【31】 Full-Stack Filters to Build Minimum Viable CNNs
    标题:构建最小可行CNN的全堆栈过滤器
    作者: Kai Han, Chang Xu
    链接:https://arxiv.org/abs/1908.02023

    【32】 Multi-view Deep Subspace Clustering Networks
    标题:多视图深子空间聚类网络
    作者: Pengfei Zhu, Qinghua Hu
    链接:https://arxiv.org/abs/1908.01978

    【33】 Self-Balanced Dropout
    标题:自平衡掉线
    作者: Shen Li, Zhengdong Lu
    链接:https://arxiv.org/abs/1908.01968

    【34】 Dialog State Tracking: A Neural Reading Comprehension Approach
    标题:对话状态跟踪:一种神经阅读理解方法
    作者: Shuyang Gao, Dilek Hakkani-Tur
    备注:10 pages, to appear in Special Interest Group on Discourse and Dialogue (SIGDIAL) 2019
    链接:https://arxiv.org/abs/1908.01946

    【35】 Policy Evaluation with Latent Confounders via Optimal Balance
    标题:通过最优平衡进行具有潜在混淆者的策略评估
    作者: Andrew Bennett, Nathan Kallus
    链接:https://arxiv.org/abs/1908.01920

    【36】 DoorGym: A Scalable Door Opening Environment And Baseline Agent
    标题:DoorGym:一个可扩展的开门环境和基线代理
    作者: Yusuke Urakami, Pieter Abbeel
    链接:https://arxiv.org/abs/1908.01887

    【37】 Backronym
    标题:回缩
    作者: Arip Asadulaev
    链接:https://arxiv.org/abs/1908.01874

    【38】 Attention Control with Metric Learning Alignment for Image Set-based Recognition
    标题:基于图像集识别的基于度量学习对齐的注意控制
    作者: Xiaofeng Liu, B.V.K Vijaya Kumar
    备注:Accepted to IEEE T-IFS (Extension of ECCV 2018 paper: Dependency-aware Attention Control for Unconstrained Face Recognition with Image Sets). arXiv admin note: substantial text overlap with arXiv:1907.03030; text overlap with arXiv:1707.00130 by other authors
    链接:https://arxiv.org/abs/1908.01872

    【39】 Unsupervised Representations of Pollen in Bright-Field Microscopy
    标题:明场显微镜中花粉的无监督表示
    作者: Peter He, Alexis Gkantiragas
    备注:Accepted at the Workshop on Computational Biology at the International Conference on Machine Learning (ICML) in Long Beach, CA, USA on June 14, 2019
    链接:https://arxiv.org/abs/1908.01866

    【40】 DELTA: A DEep learning based Language Technology plAtform
    标题:Delta:一个基于深度学习的语言技术平台
    作者: Kun Han, Xiangang Li
    链接:https://arxiv.org/abs/1908.01853

    【41】 Self-Knowledge Distillation in Natural Language Processing
    标题:自然语言处理中的自我知识提取
    作者: Sangchul Hahn, Heeyoul Choi
    链接:https://arxiv.org/abs/1908.01851

    【42】 GEAR: Graph-based Evidence Aggregating and Reasoning for Fact Verification
    标题:Gear:基于图的事实验证证据聚合与推理
    作者: Jie Zhou, Maosong Sun
    备注:Accepted by ACL 2019
    链接:https://arxiv.org/abs/1908.01843

    【43】 Multi-turn Dialogue Response Generation with Autoregressive Transformer Models
    标题:基于自回归变压器模型的多匝对话响应生成
    作者: Oluwatobi Olabiyi, Erik T. Mueller
    链接:https://arxiv.org/abs/1908.01841

    【44】 A Translate-Edit Model for Natural Language Question to SQL Query Generation on Multi-relational Healthcare Data
    标题:多关系医疗数据自然语言问题到SQL查询生成的翻译编辑模型
    作者: Ping Wang, Chandan K. Reddy
    链接:https://arxiv.org/abs/1908.01839

    【45】 Structured Knowledge Discovery from Massive Text Corpus
    标题:海量文本语料库中的结构化知识发现
    作者: Chenwei Zhang
    备注:PhD Thesis, University of Illinois at Chicago, July 2019
    链接:https://arxiv.org/abs/1908.01837

    【46】 Word Sense Disambiguation using Diffusion Kernel PCA
    标题:基于扩散核PCA的词义消歧
    作者: Bilge Sipal, Nurullah Demirci
    链接:https://arxiv.org/abs/1908.01832

    【47】 Dialogue Act Classification in Group Chats with DAG-LSTMs
    标题:DAG-LSTM群聊中的对话行为分类
    作者: Ozan İrsoy, Camilo Ortiz
    备注:Appeared in SIGIR 2019 Workshop on Conversational Interaction Systems
    链接:https://arxiv.org/abs/1908.01821

    【48】 An Unsupervised Character-Aware Neural Approach to Word and Context Representation Learning
    标题:一种无监督的字符感知神经方法在单词和上下文表征学习中的应用
    作者: Giuseppe Marra, Marco Maggini
    链接:https://arxiv.org/abs/1908.01819

    【49】 Sparsity Emerges Naturally in Neural Language Models
    标题:稀疏性在神经语言模型中自然出现
    作者: Naomi Saphra, Adam Lopez
    备注:Published in the ICML 2019 Workshop on Identifying and Understanding Deep Learning Phenomena: this https URL
    链接:https://arxiv.org/abs/1908.01817

    【50】 MacNet: Transferring Knowledge from Machine Comprehension to Sequence-to-Sequence Models
    标题:MacNet:将知识从机器理解转移到序列模型
    作者: Boyuan Pan, Xiaofei He
    备注:Accepted In NeurIPS 2018
    链接:https://arxiv.org/abs/1908.01816

    【51】 Pars-ABSA: An Aspect-based Sentiment Analysis Dataset in Persian
    标题:PARS-ABSA:波斯语基于方面的情感分析数据集
    作者: Taha Shangipour Ataei, Sauleh Eetemadi
    链接:https://arxiv.org/abs/1908.01815

    【52】 Answering Questions about Data Visualizations using Efficient Bimodal Fusion
    标题:使用有效的双峰融合回答有关数据可视化的问题
    作者: Kushal Kafle, Christopher Kanan
    链接:https://arxiv.org/abs/1908.01801

    【53】 Some Developments in Clustering Analysis on Stochastic Processes
    标题:随机过程聚类分析的若干进展
    作者: Qidi Peng, Ran Zhao
    链接:https://arxiv.org/abs/1908.01794

    【54】 Attribute-Guided Coupled GAN for Cross-Resolution Face Recognition
    标题:用于交叉分辨率人脸识别的属性引导耦合GaN
    作者: Veeru Talreja, Nasser M Nasrabadi
    链接:https://arxiv.org/abs/1908.01790

    【55】 Stochastic data-driven model predictive control using Gaussian processes
    标题:基于高斯过程的随机数据驱动模型预测控制
    作者: Eric Bradford, Ehecatl Antonio del Rio Chanona
    链接:https://arxiv.org/abs/1908.01786

    【56】 Stress-Plus-X (SPX) Graph Layout
    标题:Stress-Plus-X(SPX)图形布局
    作者: Sabin Devkota, Stephen Kobourov
    备注:25 pages, 12 figures, accepted in the 27th International Symposium on Graph Drawing and Network Visualization (GD 2019)
    链接:https://arxiv.org/abs/1908.01769

    【57】 Probabilistic Permutation Invariant Training for Speech Separation
    标题:用于语音分离的概率置换不变训练
    作者: Midia Yousefi, John H.L. Hansen
    备注:Interspeech 2019
    链接:https://arxiv.org/abs/1908.01768

    【58】 Exploring Neural Net Augmentation to BERT for Question Answering on SQUAD 2.0
    标题:探索神经网络增强到BERT在班级2.0答疑中的应用
    作者: Suhas Gupta, Eric Hulburd
    链接:https://arxiv.org/abs/1908.01767

    翻译:腾讯翻译君

    机器学习每日论文速递[08.07]

    相关文章

      网友评论

        本文标题:机器学习每日论文速递[08.07]

        本文链接:https://www.haomeiwen.com/subject/wcrodctx.html