一、介绍
声音传感器是一种接受声波并将其转换为电信号的组件,它像麦克风一样检测周围环境中的声音强度。
二、组件
★Raspberry Pi主板*1
★树莓派电源*1
★40P软排线*1
★PCF8591模数转换器模块*1
★声音传感器模块*1
★面包板*1
★跳线若干
三、实验原理
声音传感器 声音传感器模块原理图 传感器模块上的麦克风可将音频信号转换为电信号(模拟量),然后通过PCF8591将模拟量转换为数字量,并将其传输到MCU。
LM358是一款双通道运算放大器,它包含两个独立的高增益和内部补偿放大器,但在本实验中,我们只使用其中一个。麦克风将声音信号转换为电信号,然后将信号发送到LM358的引脚2,并通过外部电路将它们输出到引脚1(模块的引脚SIG)。然后使用PCF8591读取模拟值。
四、实验步骤
第1步:连接电路。
树莓派 | T型转接板 | PCF8591模块 |
---|---|---|
SDA | SDA | SDA |
SCL | SCL | SCL |
5V | 5V | VCC |
GND | GND | GND |
声音传感器模块 | T型转接板 | PCF8591模块 |
---|---|---|
AO | * | AIN0 |
DO | G17 | * |
VCC(+) | 5V | VCC |
GND(G) | GND | GND |
第2步:PCF8591模块采用的是I2C(IIC)总线进行通信的,但是在树莓派的镜像中默认是关闭的,在使用该传感器的时候,我们必须首先允许IIC总线通信。
第3步:开始编程。这里先编写一个PCF8591.py库文件,后面再编写一个python程序引入这个库文件。
PCF8591.py库文件就是PCF8591模块的程序,单独编写是为了便于重用。在这个脚本中,我们使用了一个放大器用于模拟输入和一个LED灯用于模拟输出,模拟输入不能超过3.3V!
该程序也可以单独运行,用于测试3个电阻模块的功能。需用短路帽连接AIN0和INPUT0(电位计模块),连接AIN1和INPUT1(光敏电阻模块),以及连接AIN2和INPUT2(热敏电阻模块)。
连接LED灯,AIN0(模拟输入0)端口用于接收来自电位计模块的模拟信号,AOUT(模拟输出)用于将模拟信号输出到双色LED模块,以便改变LED的亮度。
PCF8591的详细内容请查看树莓派基础实验12:PCF8591模数转换器实验。
#!/usr/bin/env python
#------------------------------------------------------
#
# 您可以使用下面语句将此脚本导入另一个脚本:
# “import PCF8591 as ADC”
#
# ADC.Setup(Address) # 查询PCF8591的地址:“sudo i2cdetect -y 1”
# i2cdetect is a userspace program to scan an I2C bus for devices.
# It outputs a table with the list of detected devices on the specified bus.
# ADC.read(channal) # Channal范围从0到3
# ADC.write(Value) # Value范围从0到255
#
#------------------------------------------------------
#SMBus (System Management Bus,系统管理总线)
import smbus #在程序中导入“smbus”模块
import time
# for RPI version 1, use "bus = smbus.SMBus(1)"
# 0 代表 /dev/i2c-0, 1 代表 /dev/i2c-1 ,具体看使用的树莓派那个I2C来决定
bus = smbus.SMBus(1) #创建一个smbus实例
#在树莓派上查询PCF8591的地址:“sudo i2cdetect -y 1”
def setup(Addr):
global address
address = Addr
def read(chn): #channel
if chn == 0:
bus.write_byte(address,0x40) #发送一个控制字节到设备
if chn == 1:
bus.write_byte(address,0x41)
if chn == 2:
bus.write_byte(address,0x42)
if chn == 3:
bus.write_byte(address,0x43)
bus.read_byte(address) # 从设备读取单个字节,而不指定设备寄存器。
return bus.read_byte(address) #返回某通道输入的模拟值A/D转换后的数字值
def write(val):
temp = val # 将字符串值移动到temp
temp = int(temp) # 将字符串改为整数类型
# print temp to see on terminal else comment out
bus.write_byte_data(address, 0x40, temp)
#写入字节数据,将数字值转化成模拟值从AOUT输出
if __name__ == "__main__":
setup(0x48)
#在树莓派终端上使用命令“sudo i2cdetect -y 1”,查询出PCF8591的地址为0x48
while True:
print '电位计 AIN0 = ', read(0) #电位计模拟信号转化的数字值
print '光敏电阻 AIN1 = ', read(1) #光敏电阻模拟信号转化的数字
print '热敏电阻 AIN2 = ', read(2) #热敏电阻模拟信号转化的数字值
tmp = read(0)
tmp = tmp*(255-125)/255+125
# 125以下LED不会亮,所以将“0-255”转换为“125-255”,调节亮度时灯不会熄灭
write(tmp)
time.sleep(2)
若想深入学习模/数转换等模电知识,强烈推荐以下书籍,国外大学最经典模电教程,比国内教程生动有趣更易懂。扫码购买或者点击下面的链接。
《模拟电子基础》点击购买:https://u.dangdang.com/OIVk
第4步:编写控制程序。PCF8591将模拟量转换为的数字量,会随着检测到的声音变大而变小,当数字量小于130时,打印"Voice detected! "。
这里为什么阈值设为130呢?声音传感器模块有两个LED灯,LED1灯为电源指示灯,接通电源就会一直常亮。LED2为声音检测指示灯,在没有检测到声音时应该熄灭,一旦检测到声音,就(才)会亮,而这需要旋转蓝色元件上的金黄色平口螺丝,调节声音检测的灵敏度来实现。否则,LED2无论检测到声音与否,都可能一直常亮,或者一直不亮。而我调节到合适位置时,安静状态下voiceValue = ADC.read(0)的值为133,所以我设置检测到声音的阈值为130比较合适。
#!/usr/bin/env python
import PCF8591 as ADC
import RPi.GPIO as GPIO
import time
GPIO.setmode(GPIO.BCM)
def setup():
ADC.setup(0x48)
def loop():
count = 0
while True:
voiceValue = ADC.read(0) #若检测到有声音,该值会变小
if voiceValue:
print 'Value:', voiceValue
if voiceValue < 130:
#我实验时安静状态下的值约为133,所以设置检测到有声音的阈值设为130
print "Voice detected! ", count
count += 1
time.sleep(0.2)
if __name__ == '__main__':
try:
setup()
loop()
except KeyboardInterrupt:
pass
网友评论