彩色直方图均衡化的步骤:
- 读取图片信息
- 各通道值计数与归一化
- 计算累积概率
- 创建三通道映射表
- 完成三通道映射
- 显示彩色直方图均衡化效果
import cv2
import numpy as np
import matplotlib.pyplot as plt
# 1 读取图片信息
img = cv2.imread('1.jpg', 1)
cv2.imshow('src', img)
imgInfo = img.shape
height = imgInfo[0]
width = imgInfo[1]
# 2 各通道值计数与归一化
# 创建float类型的一维数组
count_b = np.zeros(256, np.float)
count_g = np.zeros(256, np.float)
count_r = np.zeros(256, np.float)
# 通道值计数
for i in range(0, height):
for j in range(0, width):
(b, g, r) = img[i, j]
index_b = int(b)
index_g = int(g)
index_r = int(r)
count_b[index_b] = count_b[index_b] + 1
count_g[index_g] = count_g[index_g] + 1
count_r[index_r] = count_r[index_r] + 1
# 数据归一化
for i in range(0, 255):
count_b[i] = count_b[i] / (height * width)
count_g[i] = count_g[i] / (height * width)
count_r[i] = count_r[i] / (height * width)
# 3 计算累积概率
sum_b = float(0)
sum_g = float(0)
sum_r = float(0)
for i in range(0, 256):
sum_b = sum_g + count_b[i]
sum_g = sum_g + count_g[i]
sum_r = sum_r + count_r[i]
# 便于打印各累积概率
count_b[i] = sum_b
count_g[i] = sum_g
count_r[i] = sum_r
print(count_b) # 累积到1
print(count_g)
print(count_r)
# 4 创建三通道映射表
map_b = np.zeros(256, np.uint16) # 2^16
map_g = np.zeros(256, np.uint16)
map_r = np.zeros(256, np.uint16)
for i in range(0, 256):
map_b[i] = np.uint16(count_b[i] * 255)
map_g[i] = np.uint16(count_g[i] * 255)
map_r[i] = np.uint16(count_r[i] * 255)
# 5 完成三通道映射
dst = np.zeros((height, width, 3), np.uint8)
for i in range(0, height):
for j in range(0, width):
(b, g, r) = img[i, j]
b = map_b[b]
g = map_g[g]
r = map_r[r]
dst[i, j] = (b, g, r)
# 6 显示彩色直方图均衡化效果
cv2.imshow('dst', dst)
cv2.waitKey(0)
BGR各自的部分累积概率如下:



彩色直方图均衡化效果如下:

网友评论