美文网首页Data Structures and Algorithm@IT·互联网简友广场
在实际开发中,如何权衡选择使用哪种数据结构和算法?

在实际开发中,如何权衡选择使用哪种数据结构和算法?

作者: Sun东辉 | 来源:发表于2022-04-15 08:25 被阅读0次

    学习数据结构与算法有一段时间了,听音频、看视频、看专栏、看书、抄书,尝试了很多种方法,今天在 专栏 中看到一篇文章,觉得很不错,摘抄如下。

    学习数据结构和算法,不要停留在学院派的思维中,只把算法当作应付面试、考试或者竞赛的花拳绣腿。作为软件开发工程师,我们要把数据结构和算法,应用到软件开发中,解决实际的开发问题。不过,要想在实际的开发中,灵活、恰到好处地应用数据结构和算法,需要非常深厚的实战经验积累。因为,在软件开发中,你要面对的问题场景非常复杂、多变和不确定。

    要想游刃有余地解决今后要面对的问题,光是熟知每种数据结构和算法的功能、特点、时间空间复杂度,还是不够的。毕竟工程上的问题不是算法题。算法题的背景、条件、限制都非常明确,我们只需要在规定的输入、输出下,找最优解就可以了。而工程上的问题往往都比较开放,在选择数据结构和算法的时候,我们往往需要综合各种因素,比如编码难度、维护成本、数据特征、数据规模等,最终选择一个工程的最合适解,而非理论上的最优解。

    那么,在实际的软件开发中,如何权衡各种因素,合理地选择使用哪种数据结构和算法?关于这个问题,总结了六条经验。

    1. 时间、空间复杂度不能跟性能划等号

    • 复杂度不是执行时间和内存消耗的精确值

      在用大 O 表示法表示复杂度的时候,我们会忽略掉低阶、常数、系数,只保留高阶,并且它的度量单位是语句的执行频度。每条语句的执行时间,并非是相同、确定的。所以,复杂度给出的只能是一个非精确量值的趋势。

    • 代码的执行时间有时不跟时间复杂度成正比

      我们常说,时间复杂度是 O(nlogn) 的算法,比时间复杂度是 O(n^2) 的算法,执行效率要高。这样说的一个前提是,算法处理的是大规模数据的情况。对于小规模数据的处理,算法的执行效率并不一定跟时间复杂度成正比,有时还会跟复杂度成反比。

    • 对于处理不同问题的不同算法,其复杂度大小没有可比性

      复杂度只能用来表征不同算法,在处理同样的问题,以及同样数据类型的情况下的性能表现。但是,对于不同的问题、不同的数据类型,不同算法之间的复杂度大小并没有可比性。

    2. 抛开数据规模谈数据结构和算法都是“耍流氓”

    在平时的开发中,在数据规模很小的情况下,普通算法和高级算法之间的性能差距会非常小。如果代码执行频率不高、又不是核心代码,这个时候,我们选择数据结构和算法的主要依据是,其是否简单、容易维护、容易实现。大部分情况下,我们直接用最简单的存储结构和最暴力的算法就可以了。

    比如,对于长度在一百以内的字符串匹配,我们直接使用朴素的字符串匹配算法就够了。如果用 KMP、BM 这些更加高效的字符串匹配算法,实际上就大材小用了。因为这对于处理时间是毫秒量级敏感的系统来说,性能的提升并不大。相反,这些高级算法会徒增编码的难度,还容易产生 bug。

    3. 结合数据特征和访问方式来选择数据结构

    面对实际的软件开发场景,当我们掌握了基础数据结构和算法之后,最考验能力的并不是数据结构和算法本身,而是对问题需求的挖掘、抽象、建模。如何将一个背景复杂、开放的问题,通过细致的观察、调研、假设,理清楚要处理数据的特征与访问方式,这才是解决问题的重点。只有理清楚了这些东西,我们才能将问题转化成合理的数据结构模型,进而找到满足需求的算法。

    4. 区别对待 IO 密集、内存密集和计算密集

    如果你要处理的数据存储在磁盘,比如数据库中。那代码的性能瓶颈有可能在磁盘 IO,而并非算法本身。这个时候,你需要合理地选择数据存储格式和存取方式,减少磁盘 IO 的次数。如果你的数据是存储在内存中,那我们还需要考虑,代码是内存密集型的还是 CPU 密集型的。

    • 所谓 CPU 密集型,简单点理解就是,代码执行效率的瓶颈主要在 CPU 执行的效率。我们从内存中读取一次数据,到 CPU 缓存或者寄存器之后,会进行多次频繁的 CPU 计算(比如加减乘除),CPU 计算耗时占大部分。所以,在选择数据结构和算法的时候,要尽量减少逻辑计算的复杂度。比如,用位运算代替加减乘除运算等。
    • 所谓内存密集型,简单点理解就是,代码执行效率的瓶颈在内存数据的存取。对于内存密集型的代码,计算操作都比较简单,比如,字符串比较操作,实际上就是内存密集型的。每次从内存中读取数据之后,我们只需要进行一次简单的比较操作。所以,内存数据的读取速度,是字符串比较操作的瓶颈。因此,在选择数据结构和算法的时候,需要考虑是否能减少数据的读取量,数据是否在内存中连续存储,是否能利用 CPU 缓存预读。

    5. 善用语言提供的类,避免重复造轮子

    实际上,对于大部分常用的数据结构和算法,编程语言都提供了现成的类和函数实现。比如,Java 中的 HashMap 就是散列表的实现,TreeMap 就是红黑树的实现等。在实际的软件开发中,除非有特殊的要求,我们都可以直接使用编程语言中提供的这些类或函数。这些编程语言提供的类和函数,都是经过无数验证过的,不管是正确性、鲁棒性,都要超过你自己造的轮子。而且,你要知道,重复造轮子,并没有那么简单。你需要写大量的测试用例,并且考虑各种异常情况,还要团队能看懂、能维护。这显然是一个出力不讨好的事情。这也是很多高级的数据结构和算法,比如 Trie 树、跳表等,在工程中,并不经常被应用的原因。

    但这并不代表,学习数据结构和算法是没用的。深入理解原理,有助于你能更好地应用这些编程语言提供的类和函数。能否深入理解所用工具、类的原理,这也是普通程序员跟技术专家的区别。

    6. 千万不要漫无目的地过度优化

    掌握了数据结构和算法这把锤子,不要看哪里都是钉子。比如,一段代码执行只需要 0.01 秒,你非得用一个非常复杂的算法或者数据结构,将其优化成 0.005 秒。即便你的算法再优秀,这种微小优化的意义也并不大。相反,对应的代码维护成本可能要高很多。不过度优化并不代表,我们在软件开发的时候,可以不加思考地随意选择数据结构和算法。我们要学会估算。估算能力实际上也是一个非常重要的能力。我们不仅要对普通情况下的数据规模和性能压力做估算,还需要对异常以及将来一段时间内,可能达到的数据规模和性能压力做估算。这样,我们才能做到未雨绸缪,写出来的代码才能经久可用。

    还有,当你真的要优化代码的时候,一定要先做 Benchmark 基准测试。这样才能避免你想当然地换了一个更高效的算法,但真实情况下,性能反倒下降了。

    我们在利用数据结构和算法解决问题的时候,一定要先分析清楚问题的需求、限制、隐藏的特点等。只有搞清楚了这些,才能有针对性地选择恰当的数据结构和算法。这种灵活应用的实战能力,需要长期的刻意锻炼和积累。这是一个有经验的工程师和一个学院派的工程师的区别。

    最后,放一张总结图:

    总结

    相关文章

      网友评论

        本文标题:在实际开发中,如何权衡选择使用哪种数据结构和算法?

        本文链接:https://www.haomeiwen.com/subject/xxzvjrtx.html