美文网首页
Android Handler同步屏障(2)

Android Handler同步屏障(2)

作者: Bfmall | 来源:发表于2023-02-20 17:50 被阅读0次

接着上一篇: https://www.jianshu.com/p/a2937fbfd9f4

一、Handler同步屏障

1.1 线程同步问题

Handler是用于线程间通信的,但是它产生的根本并不只是用于UI处理,而更多的是handler是整个app通信的框架,大家可以在ActivityThread里面感受到,整个App都是用它来进行线程间的协调。Handler既然这么重要,那么它的线程安全就至关重要了,那么它是如何保证自己的线程安全呢?

Handler机制里面最主要的类MessageQueue,这个类就是所有消息的存储仓库,在这个仓库中,我们如何的管理好消息,这个就是一个关键点了。消息管理就2点:1)消息入库(enqueueMessage),2)消息出库(next),所以这两个接口是确保线程安全的主要档口。

MessageQueue类的enqueueMessage方法源码如下:

boolean enqueueMessage(Message msg, long when) {
    if (msg.target == null) {
        throw new IllegalArgumentException("Message must have a target.");
    }
    if (msg.isInUse()) {
        throw new IllegalStateException(msg + " This message is already in use.");
    }

    // 锁开始的地方
    synchronized (this) {
        if (mQuitting) {
            IllegalStateException e = new IllegalStateException(
                    msg.target + " sending message to a Handler on a dead thread");
            Log.w(TAG, e.getMessage(), e);
            msg.recycle();
            return false;
        }

        msg.markInUse();
        msg.when = when;
        Message p = mMessages;
        boolean needWake;
        if (p == null || when == 0 || when < p.when) {
            // New head, wake up the event queue if blocked.
            msg.next = p;
            mMessages = msg;
            needWake = mBlocked;
        } else {
            // Inserted within the middle of the queue.  Usually we don't have to wake
            // up the event queue unless there is a barrier at the head of the queue
            // and the message is the earliest asynchronous message in the queue.
            needWake = mBlocked && p.target == null && msg.isAsynchronous();
            Message prev;
            for (;;) {
                prev = p;
                p = p.next;
                if (p == null || when < p.when) {
                    break;
                }
                if (needWake && p.isAsynchronous()) {
                    needWake = false;
                }
            }
            msg.next = p; // invariant: p == prev.next
            prev.next = msg;
        }

        // We can assume mPtr != 0 because mQuitting is false.
        if (needWake) {
            nativeWake(mPtr);
        }
    }
    //锁结束的地方

synchronized锁是一个内置锁,也就是由系统控制锁的lock unlock时机的。
synchronized (this) 这个锁,说明的是对所有调用同一个MessageQueue对象的线程来说,他们都是互斥的,然而,在我们的Handler里面,一个线程是对应着一个唯一的Looper对象,而Looper中又只有一个唯一的MessageQueue。所以,我们主线程就只有一个MessageQueue对象,也就是说,所有的子线程向主线程发送消息的时候,主线程一次都只会处理一个消息,其他的都需要等待,那么这个时候消息队列就不会出现混乱。

另外,在看MessageQueue类的next方法:

Message next() {

    ....

    for (;;) {
        ....

        nativePollOnce(ptr, nextPollTimeoutMillis);

        //MessageQueue对象锁
        synchronized (this) {
                // Try to retrieve the next message.  Return if found.
                final long now = SystemClock.uptimeMillis();
                Message prevMsg = null;
                Message msg = mMessages;
                if (msg != null && msg.target == null) {
                    // Stalled by a barrier.  Find the next asynchronous message in the queue.
                    do {
                        prevMsg = msg;
                        msg = msg.next;
                    } while (msg != null && !msg.isAsynchronous());
                }
                if (msg != null) {
                    if (now < msg.when) {
                        // Next message is not ready.  Set a timeout to wake up when it is ready.
                        nextPollTimeoutMillis = (int) Math.min(msg.when - now, Integer.MAX_VALUE);
                    } else {
                        // Got a message.
                        mBlocked = false;
                        if (prevMsg != null) {
                            prevMsg.next = msg.next;
                        } else {
                            mMessages = msg.next;
                        }
                        msg.next = null;
                        if (DEBUG) Log.v(TAG, "Returning message: " + msg);
                        msg.markInUse();
                        return msg;
                    }
                } else {
                    // No more messages.
                    nextPollTimeoutMillis = -1;
                }
             ...
        }//synchronized 结束之处

        // Run the idle handlers.
        // We only ever reach this code block during the first iteration.
        for (int i = 0; i < pendingIdleHandlerCount; i++) {
            final IdleHandler idler = mPendingIdleHandlers[i];
            mPendingIdleHandlers[i] = null; // release the reference to the handler

            boolean keep = false;
            try {
                keep = idler.queueIdle();
            } catch (Throwable t) {
                Log.wtf(TAG, "IdleHandler threw exception", t);
            }

            if (!keep) {
                synchronized (this) {
                    mIdleHandlers.remove(idler);
                }
            }
        }

        // Reset the idle handler count to 0 so we do not run them again.
        pendingIdleHandlerCount = 0;

        // While calling an idle handler, a new message could have been delivered
        // so go back and look again for a pending message without waiting.
        nextPollTimeoutMillis = 0;
    }
}

next函数很多同学会有疑问:我从线程里面取消息,而且每次都是队列的头部取,那么它加锁是不是没有意义呢?答案是否定的,我们必须要在next里面加锁,因为,这样由于synchronized(this)作用范围是所有 this正在访问的代码块都会有保护作用,也就是它可以保证 next函数和 enqueueMessage函数能够实现互斥。这样才能真正的保证多线程访问的时候messagequeue的有序进行。

1.2 消息机制之同步屏障

同步屏障的概念,在Android开发中非常容易被人忽略,因为这个概念在我们普通的开发中太少见了,很容易被忽略。

大家经过上面的学习应该知道,线程的消息都是放到同一个MessageQueue里面,取消息的时候是互斥取消息,而且只能从头部取消息,而添加消息是按照消息的执行的先后顺序进行的排序,那么问题来了,同一个时间范围内的消息,如果它是需要立刻执行的,那我们怎么办,按照常规的办法,我们需要等到队列轮询到我自己的时候才能执行哦,那岂不是黄花菜都凉了。所以,我们需要给紧急需要执行的消息一个绿色通道,这个绿色通道就是同步屏障的概念。

同步屏障是什么?
屏障的意思即为阻碍,顾名思义,同步屏障就是阻碍同步消息,只让异步消息通过。如何开启同步屏障呢?如下而已:

MessageQueue#postSyncBarrier()

我们看看它的源码,MessageQueue类的postSyncBarrier方法:

/**
 * @hide
 **/
public int postSyncBarrier() {
    return postSyncBarrier(SystemClock.uptimeMillis());
}

private int postSyncBarrier(long when) {
    // Enqueue a new sync barrier token
    synchronized (this) {
        final int token = mNextBarrierToken++;
        //从消息池中获取Message
        final Message msg = Message.obtain();
        msg.markInUse();

        //就是这里!!!初始化Message对象的时候,并没有给target赋值,因此 target==null
        msg.when = when;
        msg.arg1 = token;

        Message prev = null;
        Message p = mMessages;

        if (when != 0) {
            while (p != null && p.when <= when) {
          //如果开启同步屏障的时间(假设记为T)T不为0,且当前的同步消息里有时间小于T,则prev也不为null
                prev = p;
                p = p.next;
            }
        }
        //根据prev是不是为null,将 msg 按照时间顺序插入到 消息队列(链表)的合适位置
        if (prev != null) { // invariant: p == prev.next
            msg.next = p;
            prev.next = msg;
        } else {
            msg.next = p;
            mMessages = msg;
        }
        return token;
    }
}

可以看到,Message 对象初始化的时候并没有给 target 赋值,因此,target == null的 来源就找到了。上面消息的插入也做了相应的注释。这样,一条target == null 的消息就进入了消息队列。

那么,开启同步屏障后,所谓的异步消息又是如何被处理的呢?
如果对消息机制有所了解的话,应该知道消息的最终处理是在消息轮询器Looper#loop()中,而loop()循环中会调用MessageQueue#next()从消息队列中进行取消息。

MessageQueue的next方法:

Message next() {
    .....//省略一些代码
    int pendingIdleHandlerCount = -1; // -1 only during first iteration
    // 1.如果nextPollTimeoutMillis=-1,一直阻塞不会超时。
    // 2.如果nextPollTimeoutMillis=0,不会阻塞,立即返回。
    // 3.如果nextPollTimeoutMillis>0,最长阻塞nextPollTimeoutMillis毫秒(超时)
    //   如果期间有程序唤醒会立即返回。
    int nextPollTimeoutMillis = 0;
    //next()也是一个无限循环
    for (;;) {
        if (nextPollTimeoutMillis != 0) {
            Binder.flushPendingCommands();
        }
        //native阻塞方法,nextPollTimeoutMillis阻塞时长
        nativePollOnce(ptr, nextPollTimeoutMillis);
        synchronized (this) {
            //获取系统开机到现在的时间
            final long now = SystemClock.uptimeMillis();
            Message prevMsg = null;
            Message msg = mMessages; //当前链表的头结点

            //关键!!!
            //如果target==null,那么它就是屏障,需要循环遍历,一直往后找到第一个异步的消息
            if (msg != null && msg.target == null) {
            // Stalled by a barrier.  Find the next asynchronous message in the queue.
                do {
                    prevMsg = msg;
                    msg = msg.next;
                } while (msg != null && !msg.isAsynchronous());//如果不是异步消息,就一直循环,直到找到异步消息
            }
            if (msg != null) {
                //如果有消息需要处理,先判断时间有没有到,(now系统当前时间  小于 当前msg要执行的时间),如果没到的话设置一下阻塞时间,
                //场景如常用的postDelay
                if (now < msg.when) {
                   //计算出离执行时间还有多久赋值给nextPollTimeoutMillis,
                   //表示nativePollOnce方法要等待nextPollTimeoutMillis时长后返回
                    nextPollTimeoutMillis = (int) Math.min(msg.when - now, Integer.MAX_VALUE);
                } else {
                    // 获取到消息
                    mBlocked = false;
                   //链表操作,获取msg并且删除该节点 (节点删除操作)
                    if (prevMsg != null) 
                        prevMsg.next = msg.next;
                    } else {
                        mMessages = msg.next;
                    }
                    msg.next = null;
                    msg.markInUse();
                    //返回拿到的消息
                    return msg;
                }
            } else {
                //没有消息,nextPollTimeoutMillis复位
                nextPollTimeoutMillis = -1;
            }
            .....//省略

}

从上面可以看出,当消息队列开启同步屏障的时候(即标识为msg.target == null),消息机制在处理消息的时候,优先处理异步消息。这样,同步屏障就起到了一种过滤和优先级的作用。

下面用示意图简单说明:


image.png

如上图所示,在消息队列中有同步消息和异步消息(黄色部分)以及一道墙----同步屏障(红色部分)。有了同步屏障的存在,msg_2 和 msg_M 这两个异步消息可以被优先处理,而后面的 msg_3 等同步消息则不会被处理。那么这些同步消息什么时候可以被处理呢?那就需要先移除这个同步屏障,即调用removeSyncBarrier()。

同步消息的应用场景

似乎在日常的应用开发中,很少会用到同步屏障。那么,同步屏障在系统源码中有哪些使用场景呢?Android 系统中的 UI 更新相关的消息即为异步消息,需要优先处理。

比如,在 View 更新时,draw、requestLayout、invalidate 等很多地方都调用了ViewRootImpl#scheduleTraversals(),如下:

ViewRootImpl.java类的scheduleTraversals方法:

void scheduleTraversals() {
    if (!mTraversalScheduled) {
        mTraversalScheduled = true;
        //开启同步屏障
        mTraversalBarrier = mHandler.getLooper().getQueue().postSyncBarrier();
        //发送异步消息
        mChoreographer.postCallback(
                Choreographer.CALLBACK_TRAVERSAL, mTraversalRunnable, null);
        if (!mUnbufferedInputDispatch) {
            scheduleConsumeBatchedInput();
        }
        notifyRendererOfFramePending();
        pokeDrawLockIfNeeded();
    }
}

postCallback()最终走到了Choreographer类的postCallbackDelayedInternal()方法:

public void postCallback(int callbackType, Runnable action, Object token) {
        postCallbackDelayed(callbackType, action, token, 0);
    }

    public void postCallbackDelayed(int callbackType,
            Runnable action, Object token, long delayMillis) {
        if (action == null) {
            throw new IllegalArgumentException("action must not be null");
        }
        if (callbackType < 0 || callbackType > CALLBACK_LAST) {
            throw new IllegalArgumentException("callbackType is invalid");
        }

        postCallbackDelayedInternal(callbackType, action, token, delayMillis);
    }

  private void postCallbackDelayedInternal(int callbackType,
            Object action, Object token, long delayMillis) {
        if (DEBUG_FRAMES) {
            Log.d(TAG, "PostCallback: type=" + callbackType- ", action=" + action + ",                      token=" + token  =" + delayMillis);
        }
        synchronized (mLock) {
        final long now = SystemClock.uptimeMillis();
        final long dueTime = now + delayMillis;
        mCallbackQueues[callbackType].addCallbackLocked(dueTime, action, token);

        if (dueTime <= now) {
            scheduleFrameLocked(now);
        } else {
            //msg what = MSG_DO_SCHEDULE_CALLBACK
            Message msg = mHandler.obtainMessage(MSG_DO_SCHEDULE_CALLBACK, action);
            msg.arg1 = callbackType;
            //设置发送的消息为异步消息
            msg.setAsynchronous(true);
            mHandler.sendMessageAtTime(msg, dueTime);
        }
    }
}

这里就开启了同步屏障,并发送异步消息,由于 UI 更新相关的消息是优先级最高的,这样系统就会优先处理这些异步消息。

最后,当要移除同步屏障的时候需要调用ViewRootImpl#unscheduleTraversals()。

    void unscheduleTraversals() {
        if (mTraversalScheduled) {
            mTraversalScheduled = false;
            //移除同步屏障
            mHandler.getLooper().getQueue().removeSyncBarrier(mTraversalBarrier);
            mChoreographer.removeCallbacks(
                    Choreographer.CALLBACK_TRAVERSAL, mTraversalRunnable, null);
        }
    }

看下Choreographer类的removeCallbacks方法:

public void removeCallbacks(int callbackType, Runnable action, Object token) {
        if (callbackType < 0 || callbackType > CALLBACK_LAST) {
            throw new IllegalArgumentException("callbackType is invalid");
        }

        removeCallbacksInternal(callbackType, action, token);
    }

    private void removeCallbacksInternal(int callbackType, Object action, Object token) {
        if (DEBUG_FRAMES) {
            Log.d(TAG, "RemoveCallbacks: type=" + callbackType
                    + ", action=" + action + ", token=" + token);
        }

        synchronized (mLock) {
            mCallbackQueues[callbackType].removeCallbacksLocked(action, token);
            if (action != null && token == null) {
                //删除msg what=MSG_DO_SCHEDULE_CALLBACK的消息
                mHandler.removeMessages(MSG_DO_SCHEDULE_CALLBACK, action);
            }
        }
    }

总结
同步屏障的设置可以方便地处理那些优先级较高的异步消息。当我们调用Handler.getLooper().getQueue().postSyncBarrier() 并设置消息的setAsynchronous(true)时,target 即为 null ,也就开启了同步屏障。当在消息轮询器 Looper 在loop()中循环处理消息时,如若开启了同步屏障,会优先处理其中的异步消息,而阻碍同步消息。

作者:我爱田Hebe
链接:https://www.jianshu.com/p/ced11afb66f7
来源:简书
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

相关文章

网友评论

      本文标题:Android Handler同步屏障(2)

      本文链接:https://www.haomeiwen.com/subject/ygfgkdtx.html