美文网首页
BERT源码分析(PART III)

BERT源码分析(PART III)

作者: kaiyuan_nlp | 来源:发表于2020-02-28 10:26 被阅读0次

    写在前面

    本文首发于公众号:NewBeeNLP

    继续之前没有介绍完的 Pre-training 部分,在上一篇中(BERT源码分析(PART II)我们已经完成了对输入数据的处理,接下来看看 BERT 是怎么完成「Masked LM」和「Next Sentence Prediction」两个任务的训练。

    • run_pretraining[1]

    任务#1:Masked LM

    get_masked_lm_output函数用于计算「任务#1」的训练 loss。输入为 BertModel 的最后一层 sequence_output 输出([batch_size, seq_length, hidden_size]),因为对一个序列的 MASK 标记的预测属于标注问题,需要整个 sequence 的输出状态。

    def get_masked_lm_output(bert_config, input_tensor, output_weights, positions,
    label_ids, label_weights):
    """Get loss and log probs for the masked LM."""
    # 获取mask词的encode
    input_tensor = gather_indexes(input_tensor, positions)

    with tf.variable_scope("cls/predictions"):
    # 在输出之前添加一个非线性变换,只在预训练阶段起作用
    with tf.variable_scope("transform"):
    input_tensor = tf.layers.dense(
    input_tensor,
    units=bert_config.hidden_size,
    activation=modeling.get_activation(bert_config.hidden_act),
    kernel_initializer=modeling.create_initializer(
    bert_config.initializer_range))
    input_tensor = modeling.layer_norm(input_tensor)

    # output_weights是和传入的word embedding一样的
    # 这里再添加一个bias
    output_bias = tf.get_variable(
    "output_bias",
    shape=[bert_config.vocab_size],
    initializer=tf.zeros_initializer())
    logits = tf.matmul(input_tensor, output_weights, transpose_b=True)
    logits = tf.nn.bias_add(logits, output_bias)
    log_probs = tf.nn.log_softmax(logits, axis=-1)

    # label_ids表示mask掉的Token的id
    label_ids = tf.reshape(label_ids, [-1])
    label_weights = tf.reshape(label_weights, [-1])

    one_hot_labels = tf.one_hot(
    label_ids, depth=bert_config.vocab_size, dtype=tf.float32)

    # 但是由于实际MASK的可能不到20,比如只MASK18,那么label_ids有2个0(padding)
    # 而label_weights=[1, 1, ...., 0, 0],说明后面两个label_id是padding的,计算loss要去掉。
    per_example_loss = -tf.reduce_sum(log_probs * one_hot_labels, axis=[-1])
    numerator = tf.reduce_sum(label_weights * per_example_loss)
    denominator = tf.reduce_sum(label_weights) + 1e-5
    loss = numerator / denominator

    return (loss, per_example_loss, log_probs)

    任务#2 Next Sentence Prediction

    get_next_sentence_output函数用于计算「任务#2」的训练 loss。输入为 BertModel 的最后一层 pooled_output 输出([batch_size, hidden_size]),因为该任务属于二分类问题,所以只需要每个序列的第一个 token【CLS】即可。

    def get_next_sentence_output(bert_config, input_tensor, labels):
    """Get loss and log probs for the next sentence prediction."""

    # 标签0表示 下一个句子关系成立;标签1表示 下一个句子关系不成立。
    # 这个分类器的参数在实际Fine-tuning阶段会丢弃掉
    with tf.variable_scope("cls/seq_relationship"):
    output_weights = tf.get_variable(
    "output_weights",
    shape=[2, bert_config.hidden_size],
    initializer=modeling.create_initializer(bert_config.initializer_range))
    output_bias = tf.get_variable(
    "output_bias", shape=[2], initializer=tf.zeros_initializer())

    logits = tf.matmul(input_tensor, output_weights, transpose_b=True)
    logits = tf.nn.bias_add(logits, output_bias)
    log_probs = tf.nn.log_softmax(logits, axis=-1)
    labels = tf.reshape(labels, [-1])
    one_hot_labels = tf.one_hot(labels, depth=2, dtype=tf.float32)
    per_example_loss = -tf.reduce_sum(one_hot_labels * log_probs, axis=-1)
    loss = tf.reduce_mean(per_example_loss)
    return (loss, per_example_loss, log_probs)

    自定义模型

    module_fn_builder函数,用于构造 Estimator 使用的model_fn。定义好了上述两个训练任务,就可以写出训练过程,之后将训练集传入自动训练。

    def model_fn_builder(bert_config, init_checkpoint, learning_rate,
    num_train_steps, num_warmup_steps, use_tpu,
    use_one_hot_embeddings):

    def model_fn(features, labels, mode, params):

    tf.logging.info("*** Features ***")
    for name in sorted(features.keys()):
    tf.logging.info(" name = %s, shape = %s" % (name, features[name].shape))

    input_ids = features["input_ids"]
    input_mask = features["input_mask"]
    segment_ids = features["segment_ids"]
    masked_lm_positions = features["masked_lm_positions"]
    masked_lm_ids = features["masked_lm_ids"]
    masked_lm_weights = features["masked_lm_weights"]
    next_sentence_labels = features["next_sentence_labels"]

    is_training = (mode == tf.estimator.ModeKeys.TRAIN)

    # 创建Transformer实例对象
    model = modeling.BertModel(
    config=bert_config,
    is_training=is_training,
    input_ids=input_ids,
    input_mask=input_mask,
    token_type_ids=segment_ids,
    use_one_hot_embeddings=use_one_hot_embeddings)

    # 获得MASK LM任务的批损失,平均损失以及预测概率矩阵
    (masked_lm_loss,
    masked_lm_example_loss, masked_lm_log_probs) = get_masked_lm_output(
    bert_config, model.get_sequence_output(), model.get_embedding_table(),
    masked_lm_positions, masked_lm_ids, masked_lm_weights)

    # 获得NEXT SENTENCE PREDICTION任务的批损失,平均损失以及预测概率矩阵
    (next_sentence_loss, next_sentence_example_loss,
    next_sentence_log_probs) = get_next_sentence_output(
    bert_config, model.get_pooled_output(), next_sentence_labels)

    # 总的损失定义为两者之和
    total_loss = masked_lm_loss + next_sentence_loss

    # 获取所有变量
    tvars = tf.trainable_variables()

    initialized_variable_names = {}
    scaffold_fn = None
    # 如果有之前保存的模型,则进行恢复
    if init_checkpoint:
    (assignment_map, initialized_variable_names
    ) = modeling.get_assignment_map_from_checkpoint(tvars, init_checkpoint)
    if use_tpu:

    def tpu_scaffold():
    tf.train.init_from_checkpoint(init_checkpoint, assignment_map)
    return tf.train.Scaffold()

    scaffold_fn = tpu_scaffold
    else:
    tf.train.init_from_checkpoint(init_checkpoint, assignment_map)

    tf.logging.info("**** Trainable Variables ****")
    for var in tvars:
    init_string = ""
    if var.name in initialized_variable_names:
    init_string = ", *INIT_FROM_CKPT*"
    tf.logging.info(" name = %s, shape = %s%s", var.name, var.shape,
    init_string)

    output_spec = None
    # 训练过程,获得spec
    if mode == tf.estimator.ModeKeys.TRAIN:
    train_op = optimization.create_optimizer(
    total_loss, learning_rate, num_train_steps, num_warmup_steps, use_tpu)

    output_spec = tf.contrib.tpu.TPUEstimatorSpec(
    mode=mode,
    loss=total_loss,
    train_op=train_op,
    scaffold_fn=scaffold_fn)
    # 验证过程spec
    elif mode == tf.estimator.ModeKeys.EVAL:

    def metric_fn(masked_lm_example_loss, masked_lm_log_probs, masked_lm_ids,
    masked_lm_weights, next_sentence_example_loss,
    next_sentence_log_probs, next_sentence_labels):
    """计算损失和准确率"""
    masked_lm_log_probs = tf.reshape(masked_lm_log_probs,
    [-1, masked_lm_log_probs.shape[-1]])
    masked_lm_predictions = tf.argmax(
    masked_lm_log_probs, axis=-1, output_type=tf.int32)
    masked_lm_example_loss = tf.reshape(masked_lm_example_loss, [-1])
    masked_lm_ids = tf.reshape(masked_lm_ids, [-1])
    masked_lm_weights = tf.reshape(masked_lm_weights, [-1])
    masked_lm_accuracy = tf.metrics.accuracy(
    labels=masked_lm_ids,
    predictions=masked_lm_predictions,
    weights=masked_lm_weights)
    masked_lm_mean_loss = tf.metrics.mean(
    values=masked_lm_example_loss, weights=masked_lm_weights)

    next_sentence_log_probs = tf.reshape(
    next_sentence_log_probs, [-1, next_sentence_log_probs.shape[-1]])
    next_sentence_predictions = tf.argmax(
    next_sentence_log_probs, axis=-1, output_type=tf.int32)
    next_sentence_labels = tf.reshape(next_sentence_labels, [-1])
    next_sentence_accuracy = tf.metrics.accuracy(
    labels=next_sentence_labels, predictions=next_sentence_predictions)
    next_sentence_mean_loss = tf.metrics.mean(
    values=next_sentence_example_loss)

    return {
    "masked_lm_accuracy": masked_lm_accuracy,
    "masked_lm_loss": masked_lm_mean_loss,
    "next_sentence_accuracy": next_sentence_accuracy,
    "next_sentence_loss": next_sentence_mean_loss,
    }

    eval_metrics = (metric_fn, [
    masked_lm_example_loss, masked_lm_log_probs, masked_lm_ids,
    masked_lm_weights, next_sentence_example_loss,
    next_sentence_log_probs, next_sentence_labels
    ])
    output_spec = tf.contrib.tpu.TPUEstimatorSpec(
    mode=mode,
    loss=total_loss,
    eval_metrics=eval_metrics,
    scaffold_fn=scaffold_fn)
    else:
    raise ValueError("Only TRAIN and EVAL modes are supported: %s" % (mode))

    return output_spec

    return model_fn

    主函数

    基于上述函数实现训练过程

    def main(_):
    tf.logging.set_verbosity(tf.logging.INFO)
    if not FLAGS.do_train and not FLAGS.do_eval:
    raise ValueError("At least one of `do_train` or `do_eval` must be True.")
    bert_config = modeling.BertConfig.from_json_file(FLAGS.bert_config_file)
    tf.gfile.MakeDirs(FLAGS.output_dir)

    input_files = []
    for input_pattern in FLAGS.input_file.split(","):
    input_files.extend(tf.gfile.Glob(input_pattern))

    tf.logging.info("*** Input Files ***")
    for input_file in input_files:
    tf.logging.info(" %s" % input_file)

    tpu_cluster_resolver = None
    if FLAGS.use_tpu and FLAGS.tpu_name:
    tpu_cluster_resolver = tf.contrib.cluster_resolver.TPUClusterResolver(
    FLAGS.tpu_name, zone=FLAGS.tpu_zone, project=FLAGS.gcp_project)

    is_per_host = tf.contrib.tpu.InputPipelineConfig.PER_HOST_V2
    run_config = tf.contrib.tpu.RunConfig(
    cluster=tpu_cluster_resolver,
    master=FLAGS.master,
    model_dir=FLAGS.output_dir,
    save_checkpoints_steps=FLAGS.save_checkpoints_steps,
    tpu_config=tf.contrib.tpu.TPUConfig(
    iterations_per_loop=FLAGS.iterations_per_loop,
    num_shards=FLAGS.num_tpu_cores,
    per_host_input_for_training=is_per_host))

    # 自定义模型用于estimator训练
    model_fn = model_fn_builder(
    bert_config=bert_config,
    init_checkpoint=FLAGS.init_checkpoint,
    learning_rate=FLAGS.learning_rate,
    num_train_steps=FLAGS.num_train_steps,
    num_warmup_steps=FLAGS.num_warmup_steps,
    use_tpu=FLAGS.use_tpu,
    use_one_hot_embeddings=FLAGS.use_tpu)

    # 如果没有TPU,会自动转为CPU/GPU的Estimator
    estimator = tf.contrib.tpu.TPUEstimator(
    use_tpu=FLAGS.use_tpu,
    model_fn=model_fn,
    config=run_config,
    train_batch_size=FLAGS.train_batch_size,
    eval_batch_size=FLAGS.eval_batch_size)

    if FLAGS.do_train:
    tf.logging.info("***** Running training *****")
    tf.logging.info(" Batch size = %d", FLAGS.train_batch_size)
    train_input_fn = input_fn_builder(
    input_files=input_files,
    max_seq_length=FLAGS.max_seq_length,
    max_predictions_per_seq=FLAGS.max_predictions_per_seq,
    is_training=True)
    estimator.train(input_fn=train_input_fn, max_steps=FLAGS.num_train_steps)

    if FLAGS.do_eval:
    tf.logging.info("***** Running evaluation *****")
    tf.logging.info(" Batch size = %d", FLAGS.eval_batch_size)

    eval_input_fn = input_fn_builder(
    input_files=input_files,
    max_seq_length=FLAGS.max_seq_length,
    max_predictions_per_seq=FLAGS.max_predictions_per_seq,
    is_training=False)

    result = estimator.evaluate(
    input_fn=eval_input_fn, steps=FLAGS.max_eval_steps)

    output_eval_file = os.path.join(FLAGS.output_dir, "eval_results.txt")
    with tf.gfile.GFile(output_eval_file, "w") as writer:
    tf.logging.info("***** Eval results *****")
    for key in sorted(result.keys()):
    tf.logging.info(" %s = %s", key, str(result[key]))
    writer.write("%s = %s\n" % (key, str(result[key])))

    代码测试

    预训练运行脚本

    python run_pretraining.py \
    --input_file=/tmp/tf_examples.tfrecord \
    --output_dir=/tmp/pretraining_output \
    --do_train=True \
    --do_eval=True \
    --bert_config_file=$BERT_BASE_DIR/bert_config.json \
    --init_checkpoint=$BERT_BASE_DIR/bert_model.ckpt \
    --train_batch_size=32 \
    --max_seq_length=128 \
    --max_predictions_per_seq=20 \
    --num_train_steps=20 \
    --num_warmup_steps=10 \
    --learning_rate=2e-5

    之后你可以得到类似以下输出日志:

    ***** Eval results *****
    global_step = 20
    loss = 0.0979674
    masked_lm_accuracy = 0.985479
    masked_lm_loss = 0.0979328
    next_sentence_accuracy = 1.0
    next_sentence_loss = 3.45724e-05

    Over~BERT源码系列到这里就结束啦

    为了方便阅读我打包整理成了一个完整的PDF版本,关注NewBeeNLP公众号回复"BERT源码"即可下载

    PS.到现在为止,BERT也更新了很多比如Whole Word Masking等等,所以之前有错误的还请大家一定指出,我好及时修正~

    本文参考资料

    [1]run_pretraining: https://github.com/google-research/bert/blob/master/run_pretraining.py

    相关文章

      网友评论

          本文标题:BERT源码分析(PART III)

          本文链接:https://www.haomeiwen.com/subject/zeekhhtx.html