美文网首页
2019-03-13

2019-03-13

作者: b6b299e7d230 | 来源:发表于2019-03-16 16:21 被阅读0次

    转动定律&陈学桐

    知识点
    • 类比法理解牛顿第二定律和转动定律
    • 单个刚体的转动
    • 转动、平动组合体:
      • 先根据隔离法对各个物件进行简单的受力分析;
      • 对平动的物件(记为i)按照牛顿第二定律F_{i}=m_{i}a_{i}列方程;
      • 对转动的物件(记为j)按照转动定律M_{j}=I_{j}\alpha_{j}列方程;
      • 根据约束条件列方程。
    表达题
    • 转动定律请与平动进行“类比”理解。平动有\frac{d\vec{p}}{dt}=\vec{F}a=\frac{F}{m},那么转动定律的公式是

    答:\frac{dL}{dt}=J\frac{d\omega}{dt}=M=J\omega

    • 均匀细棒左端固定。今使棒从水平位置由静止开始自由下落,当下落至图示位置时,角加速度是多少?

    答:\alpha=\frac{3gsin\theta}{2l}

    • 重滑轮,半径为R,质量为M,转动惯量为\frac{1}{2}MR^{2}。今两端的拉力分别为T_{1}T_{2},且约定角动量的方向垂直于纸面向外为正,则该滑轮的角加速度是多少? Fig101006.png

    答:\alpha=\frac{2(T_1-T_2)}{MR^2}

    • 一质量为m的小球以v_{0}的速率沿x轴前进,在恒定的摩擦力的作用下,\Delta t时间内正好停止运动,则该摩擦力的大小为\frac{mv_0}{\Delta t} 。一飞轮以\omega_{0}的转速旋转,转动惯量为I,现加一恒定的制动力矩使飞轮在\Delta t时间内停止转动,则该恒定制动力矩的大小为

    答:\frac{\omega_0I}{\Delta t}

    • 图示为一个多体系统,预设加速运动方向用黑色表示。

      Fig101005.png
      则对M列方程,有如下可能的方程

      (1) FR-TR=\frac{1}{2}MR^{2}\cdot\alpha

      (2) FR+TR=\frac{1}{2}MR^{2}\cdot\alpha

      m列方程,有如下列法

      (3) T-mg=m\cdot a

      (4) mg-T=m\cdot a

      对约束方程,有如下列法

      (5) a=R\alpha

      (6) a=R\alpha^{2}

      以上正确的是

    答:(1)(3)(5)

    相关文章

      网友评论

          本文标题:2019-03-13

          本文链接:https://www.haomeiwen.com/subject/zlbapqtx.html