美文网首页R
五星推荐一个特别详细的 NGS 分析教程网址 bioinform

五星推荐一个特别详细的 NGS 分析教程网址 bioinform

作者: 热衷组培的二货潜 | 来源:发表于2020-03-02 17:47 被阅读0次

    一份非常好的数据分析学习资料(一切源于我要做 WGBS 分析的 PPT)

    链接:https://bioinformatics.ca/workshops/2018-epigenomic-data-analysis/

    视频链接:
    https://www.youtube.com/channel/UCKbkfKk65PZyRCzUwXOJung/featured

    github 链接:
    https://github.com/bioinformatics-ca

    twitter 主页:
    https://twitter.com/bioinfodotca

    各种主页:
    https://bioinformaticsdotca.github.io/

    youtube 链接:
    https://www.youtube.com/channel/UCKbkfKk65PZyRCzUwXOJung





    最重要:有视频、有实战,并且都是讲的特别详细。

    容我打开 2019 资料网站:https://bioinformaticsdotca.github.io/

    点进去界面是这样的:


    再往下滑动:


    好了,我们可以清楚的看到分为几大块。

    High-throughput Biology: From Sequence to Networks

    这部分主要讲从序列到最终的调控网络,也包括了一些基础的 UNIX/R 的学习。(这部分 PDF 421 页)

    准备工作:

    1. R Preparation tutorials:
    2. UNIX Preparation tutorials:
    3. Sequencing Terminology
    4. Cytoscape Preparation tutorials: Complete the introductory tutorial to Cytoscape

    培训前需要查看的文献

    接下来就是一周的课程安排

    • Module 1: Introduction to High-throughput Sequencing
    • Module 2: Data Visualization
    • Module 3: Genome Alignment
    • Module 4: Small-Variant Calling and Annotation
    • Module 5: Structural Variant Calling
    • Module 6: De Novo Assembly
    • Module 7: Introduction to RNA Sequencing Analysis
    • Module 8: RNA-seq Alignment and Visualization
    • Paper: Recurrent chimeric RNAs enriched in human prostate cancer identified by deep sequencing
    • Module 9: Expression and Differential Expression
    • Module 10: Reference Free Alignment
    • Module 11: Isoform Discovery and Alternative Expression
    • Module 12: Introduction to Pathway and Network Analysis
    • Module 13: Finding Over-Represented Pathways
    • Module 14: Network Visualization and Analysis with Cytoscape and Reactome
    • Module 15: More Depth on Network and Pathway Analysis and Cytoscape Enrichment map
    • Module 16: Gene Function Prediction
    • Module 17: Regulatory Network Analysis

    Introduction to R

    两天

    Exploratory Analysis of Biological Data Using R

    两天

    Bioinformatics for Cancer Genomics

    这部分PDF 316 + 49 + 52 页
    这部分学癌症相关的应该是大有用处

    • Module 1: Introduction to Cancer Genomics
    • Module 2: Ethics of Data Usage and Security
    • Module 3: Databases and Visualization Tools
    • Module 4: Genome Alignment
    • Module 5: Genome Assembly-
    • Module 6: Copy Number Variants
    • Module 7: Somatic Mutations and Annotations
    • Module 8: Gene Expression Profiling
    • Module 9: Gene Fusion and Rearrangements
    • Module 10: Genes to Pathways
    • Module 11: Variants to Networks
    • Module 12: Integration of Clinical Data

    Informatics for RNA-Seq Analysis

    这部分就是我们最基础的 RNA-seq 分析所需要做的内容 这部分PDF 131 页

    • Module 1: Introduction to Cloud Computing
    • Module 2: Introduction to RNA Sequencing Analysis
    • Module 3: RNA-seq Alignment and Visualization
    • Module 4: Expression and Differential Expression
    • Module 5: Reference Free Alignment
    • Module 6: Isoform Discovery and Alternative Expression
    • Module 7: Genome Guided and Genome-Free Transcriptome Assembly
    • Module 8: Functional Annotation and Analysis of Transcripts

    Informatics on High-Throughput Sequencing Data

    这部分PDF 182 页

    • Module 1: Introduction to High-throughput Sequencing
    • Module 2: Data Visualization
    • Module 3: Genome Alignment
    • Module 4: Small-Variant Calling and Annotation
    • Module 5: Structural Variant Calling
    • Module 6: De Novo Assembly

    Pathway and Network Analysis of -omics Data

    这部分对于做调控网络的应该是大有帮助 这部分PDF 186 页

    • Module 1: Introduction to Pathway and Network Analysis
    • Module 2 Finding Over-Represented Pathways
    • Module 3: Network Visualization and Analysis with Cytoscape
    • Module 4: More Depth on Network and Pathway Analysis
    • Module 5: Gene Function Prediction
    • Module 6: Regulatory Network Analysis

    Using Clouds for Big Cancer Data Analysis

    上面就是 2019 年培训资料相关的。

    当然这只是一部分,和我开头说的表观方面干系不大啊?然后我就找到了他们表观数据分析的资料存放地方。

    Epigenomic Data Analysis:这部分是 2018 年的

    https://bioinformatics.ca/workshops/2018-epigenomic-data-analysis/

    讲什么呢?

    Participants will gain practical experience and skills to be able to:

    • Align ChIP-seq and WGBS sequence data to a reference genome (required)
    • Identify narrow and broad peaks from ChIP-seq data
    • Identify methylated levels from WGBS data
    • Visualize and summarize the output of ChIP-Seq and WGBS analyses
    • Explore integrative tools for epigenomic data sets

    你可以看到这里就是讲 ChIP-seqWGBS 分析,当然肯定也有基础的 UNIXR
    最最最重要的这部分都是有视频的。

    哦,对了,这个国内进不去,自己想想办法吧。这年头干这行没点手段怎么更好的学习。

    附上 2019 年的相关资料 PDF :https://ws28.cn/f/1y1n77osfon (有效期至 2020.03.3 五点)

    相关文章

      网友评论

        本文标题:五星推荐一个特别详细的 NGS 分析教程网址 bioinform

        本文链接:https://www.haomeiwen.com/subject/zonvkhtx.html