一份非常好的数据分析学习资料(一切源于我要做 WGBS 分析的 PPT)
链接:https://bioinformatics.ca/workshops/2018-epigenomic-data-analysis/
视频链接:
https://www.youtube.com/channel/UCKbkfKk65PZyRCzUwXOJung/featured
github 链接:
https://github.com/bioinformatics-ca
twitter 主页:
https://twitter.com/bioinfodotca
各种主页:
https://bioinformaticsdotca.github.io/
youtube 链接:
https://www.youtube.com/channel/UCKbkfKk65PZyRCzUwXOJung
最重要:有视频、有实战,并且都是讲的特别详细。
容我打开 2019 资料网站:https://bioinformaticsdotca.github.io/
点进去界面是这样的:
再往下滑动:
好了,我们可以清楚的看到分为几大块。
High-throughput Biology: From Sequence to Networks
这部分主要讲从序列到最终的调控网络,也包括了一些基础的 UNIX/R 的学习。(这部分 PDF 421 页)
准备工作:
- R Preparation tutorials:
- UNIX Preparation tutorials:
- Sequencing Terminology
- Cytoscape Preparation tutorials: Complete the introductory tutorial to Cytoscape
培训前需要查看的文献
-
Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration
-
A survey of sequence alignment algorithms for next-generation sequencing
-
Genotype and SNP calling from next-generation sequencing data
-
Informatics for RNA Sequencing: A Web Resource for Analysis on the Cloud
-
Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown
-
Methods to study splicing from high-throughput RNA sequencing data
-
Recurrent chimeric RNAs enriched in human prostate cancer identified by deep sequencing
-
iRegulon: From a Gene List to a Gene Regulatory Network Using Large Motif and Track Collections
-
g:Profiler–a web-based toolset for functional profiling of gene lists from large-scale experiments
-
g:Profiler–a web server for functional interpretation of gene lists (2011 update)
接下来就是一周的课程安排
- Module 1: Introduction to High-throughput Sequencing
- Module 2: Data Visualization
- Module 3: Genome Alignment
- Module 4: Small-Variant Calling and Annotation
- Module 5: Structural Variant Calling
- Module 6: De Novo Assembly
- Module 7: Introduction to RNA Sequencing Analysis
- Module 8: RNA-seq Alignment and Visualization
- Paper: Recurrent chimeric RNAs enriched in human prostate cancer identified by deep sequencing
- Module 9: Expression and Differential Expression
- Module 10: Reference Free Alignment
- Module 11: Isoform Discovery and Alternative Expression
- Module 12: Introduction to Pathway and Network Analysis
- Module 13: Finding Over-Represented Pathways
- Module 14: Network Visualization and Analysis with Cytoscape and Reactome
- Module 15: More Depth on Network and Pathway Analysis and Cytoscape Enrichment map
- Module 16: Gene Function Prediction
- Module 17: Regulatory Network Analysis
Introduction to R
两天
Exploratory Analysis of Biological Data Using R
两天
Bioinformatics for Cancer Genomics
这部分PDF 316 + 49 + 52 页
这部分学癌症相关的应该是大有用处
- Module 1: Introduction to Cancer Genomics
- Module 2: Ethics of Data Usage and Security
- Module 3: Databases and Visualization Tools
- Module 4: Genome Alignment
- Module 5: Genome Assembly-
- Module 6: Copy Number Variants
- Module 7: Somatic Mutations and Annotations
- Module 8: Gene Expression Profiling
- Module 9: Gene Fusion and Rearrangements
- Module 10: Genes to Pathways
- Module 11: Variants to Networks
- Module 12: Integration of Clinical Data
Informatics for RNA-Seq Analysis
这部分就是我们最基础的 RNA-seq 分析所需要做的内容 这部分PDF 131 页
- Module 1: Introduction to Cloud Computing
- Module 2: Introduction to RNA Sequencing Analysis
- Module 3: RNA-seq Alignment and Visualization
- Module 4: Expression and Differential Expression
- Module 5: Reference Free Alignment
- Module 6: Isoform Discovery and Alternative Expression
- Module 7: Genome Guided and Genome-Free Transcriptome Assembly
- Module 8: Functional Annotation and Analysis of Transcripts
Informatics on High-Throughput Sequencing Data
这部分PDF 182 页
- Module 1: Introduction to High-throughput Sequencing
- Module 2: Data Visualization
- Module 3: Genome Alignment
- Module 4: Small-Variant Calling and Annotation
- Module 5: Structural Variant Calling
- Module 6: De Novo Assembly
Pathway and Network Analysis of -omics Data
这部分对于做调控网络的应该是大有帮助 这部分PDF 186 页
- Module 1: Introduction to Pathway and Network Analysis
- Module 2 Finding Over-Represented Pathways
- Module 3: Network Visualization and Analysis with Cytoscape
- Module 4: More Depth on Network and Pathway Analysis
- Module 5: Gene Function Prediction
- Module 6: Regulatory Network Analysis
Using Clouds for Big Cancer Data Analysis
上面就是 2019 年培训资料相关的。
当然这只是一部分,和我开头说的表观方面干系不大啊?然后我就找到了他们表观数据分析的资料存放地方。
Epigenomic Data Analysis:这部分是 2018 年的
https://bioinformatics.ca/workshops/2018-epigenomic-data-analysis/
讲什么呢?
Participants will gain practical experience and skills to be able to:
- Align ChIP-seq and WGBS sequence data to a reference genome (required)
- Identify narrow and broad peaks from ChIP-seq data
- Identify methylated levels from WGBS data
- Visualize and summarize the output of ChIP-Seq and WGBS analyses
- Explore integrative tools for epigenomic data sets
你可以看到这里就是讲 ChIP-seq 和 WGBS 分析,当然肯定也有基础的 UNIX 和 R 。
最最最重要的这部分都是有视频的。
哦,对了,这个国内进不去,自己想想办法吧。这年头干这行没点手段怎么更好的学习。
附上 2019 年的相关资料 PDF :https://ws28.cn/f/1y1n77osfon (有效期至 2020.03.3 五点)
网友评论