countdownlatch是JDK提供的一个线程控制的工具类,虽然代码短少,实现简单,但是它的作用却十分的大。
1.从一个例子开始####
1.现有一文件,文件的大小超过100G,现在的需求是,计算文件中每一行数据的MD5值。
2.现在要实现一个RPC请求模型,要求实现,RPC过程中的请求超时的判断和处理流程。
先说第一个场景,第一个场景需要计算所有文件的MD5,但是100G文件处理相对较大,那么我们势必要利用多线程去并行处理大文件,并将最后的结果输出。但是如何控制主线程在所有线程结束之后结束,是一个需要思考的过程。
第二个场景,在RPC请求发出后,我们需要在一定时间内等待请求的响应,在超时之后没有响应的,我们需要抛出异常。
上面两种场景,其实用wait notify都可以解决,但是实现起来是比较麻烦的,但是用countdownlatch解决起来十分简单。
拿第一个例子来说,我们简单的实现一下:
package countdownlatch;
import com.google.common.base.Charsets;
import com.google.common.hash.HashCode;
import com.google.common.hash.HashFunction;
import com.google.common.hash.Hashing;
import java.util.concurrent.ArrayBlockingQueue;
import java.util.concurrent.CountDownLatch;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
/**
* 多线程处理一个文件
*/
public class MultiThread {
private static ArrayBlockingQueue<String> blockingQueue = new ArrayBlockingQueue<String>(10);
private static CountDownLatch latch;
private static final int ThreadNum = 10;
static {
for (int i = 0; i < 10; i++) {
blockingQueue.add("test" + i);
}
latch = new CountDownLatch(10);
}
/**
* 用blockQueue中的元素模拟文件分片
* @return
*/
public static String getFileSplit() {
return blockingQueue.poll();
}
static class myThread implements Runnable {
public void run() {
System.out.println(Thread.currentThread().getName() + "begin running...");
String m = getFileSplit();
HashFunction hf = Hashing.md5();
HashCode hc = hf.newHasher()
.putString(m, Charsets.UTF_8)
.hash();
System.out.println(hc.toString());
try {
Thread.currentThread().sleep(5000);
} catch (InterruptedException e) {
e.printStackTrace();
}
latch.countDown();
System.out.println(Thread.currentThread().getName() + "ended");
}
}
public static void main(String args[]){
System.out.println("主线程开始运行");
ExecutorService service = Executors.newFixedThreadPool(10);
for (int i=0;i<ThreadNum;i++){
service.execute(new Thread(new myThread()));
}
service.shutdown();
System.out.println("线程已经全部运行");
System.out.println("等待所有线程运行结束");
try {
latch.await();
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println("主线程退出");
}
}
输出是这样的:
主线程开始运行
线程已经全部运行
等待所有线程运行结束
pool-1-thread-2begin running...
pool-1-thread-6begin running...
pool-1-thread-1begin running...
pool-1-thread-3begin running...
pool-1-thread-5begin running...
pool-1-thread-9begin running...
pool-1-thread-8begin running...
pool-1-thread-10begin running...
pool-1-thread-7begin running...
pool-1-thread-4begin running...
b04083e53e242626595e2b8ea327e525
5e40d09fa0529781afd1254a42913847
8ad8757baa8564dc136c1e07507f4a98
86985e105f79b95d6bc918fb45ec7727
739969b53246b2c727850dbb3490ede6
5a105e8b9d40e1329780d62ea2265d8a
4cfad7076129962ee70c36839a1e3e15
ad0234829205b9033196ba818f7a872b
f6f4061a1bddc1c04d8109b39f581270
e3d704f3542b44a621ebed70dc0efe13
pool-1-thread-3ended
pool-1-thread-2ended
pool-1-thread-10ended
pool-1-thread-4ended
pool-1-thread-7ended
pool-1-thread-5ended
pool-1-thread-6ended
pool-1-thread-8ended
pool-1-thread-1ended
pool-1-thread-9ended
主线程退出
从输出我们可以看出,主线程确实是等所有线程结束后才退出的,这也正是我们预期的结果,有的童鞋就说了,我可以利用join实现和你一样的效果,但是Join是基于wait实现的,每一个线程join另一个线程就会有一个线程进入wait状态,也就是说同一时刻只有一个线程在运行,多余的CPU都浪费掉了,这显然不是很合理。
2.说说countdownlatch的API####
countdownlatch的API真的很少,下图是这个工具类的完整结构。
Paste_Image.png
我们可以看到主要方法有三个:await(),await(long, TimeUnit),countDown()
await():阻塞当前线程,直到latch的值为0,或当前线程被中断
* Causes the current thread to wait until the latch has counted down to
* zero, unless the thread is {@linkplain Thread#interrupt interrupted}.
await(long, TimeUnit):阻塞当前线程,知道latch为0,线程被中断,或者超时。
* Causes the current thread to wait until the latch has counted down to
* zero, unless the thread is {@linkplain Thread#interrupt interrupted},
* or the specified waiting time elapses.
countDown():使latch的值减小1
Decrements the count of the latch, releasing all waiting threads if
* the count reaches zero.
3.说说countdownlatch的实现
countdownlatch其实是基于同步器AbstractQueuedSynchronizer实现的,ReentrantLock其实也是基于AbstractQueuedSynchronizer实现的,那么好像预示了什么。
首先看构造函数:
/**
* Constructs a {@code CountDownLatch} initialized with the given count.
*
* @param count the number of times {@link #countDown} must be invoked
* before threads can pass through {@link #await}
* @throws IllegalArgumentException if {@code count} is negative
*/
public CountDownLatch(int count) {
if (count < 0) throw new IllegalArgumentException("count < 0");
this.sync = new Sync(count);
}
构造函数的参数是一个整数值,意思是说需要多少个latch。
实体化Sync,sync是countdownlatch的内部类,它继承了AbstractQueuedSynchronizer。
Sync(int count) {
setState(count);
}
主要是将latch的值赋予AbstractQueuedSynchronizer的State
再看await()方法:
public void await() throws InterruptedException {
sync.acquireSharedInterruptibly(1);
}
await()内调用了 sync.acquireSharedInterruptibly(1) ;
/**
* Acquires in shared mode, aborting if interrupted. Implemented
* by first checking interrupt status, then invoking at least once
* {@link #tryAcquireShared}, returning on success. Otherwise the
* thread is queued, possibly repeatedly blocking and unblocking,
* invoking {@link #tryAcquireShared} until success or the thread
* is interrupted.
* @param arg the acquire argument
* This value is conveyed to {@link #tryAcquireShared} but is
* otherwise uninterpreted and can represent anything
* you like.
* @throws InterruptedException if the current thread is interrupted
*/
public final void acquireSharedInterruptibly(int arg)
throws InterruptedException {
if (Thread.interrupted())
throw new InterruptedException();
if (tryAcquireShared(arg) < 0)
doAcquireSharedInterruptibly(arg);
}
这里先检测了线程中断状态,中断了则抛出异常,接下来调用tryAcquireShared,tryAcquireShared是Syn的实现的:
protected int tryAcquireShared(int acquires) {
return (getState() == 0) ? 1 : -1;
}
其实就是简单的获取了同步器的state,判断是否为0,之前博客里面有写ReentrantLock,两者的机制是一样的。因为countDownLacth实例化之后的State一般不是0,那么此方法返回-1.进入doAcquireSharedInterruptibly:
/**
/**
* Acquires in shared interruptible mode.
* @param arg the acquire argument
*/
private void doAcquireSharedInterruptibly(int arg)
throws InterruptedException {
final Node node = addWaiter(Node.SHARED);
boolean failed = true;
try {
for (;;) {
final Node p = node.predecessor();
if (p == head) {
int r = tryAcquireShared(arg);
if (r >= 0) {
setHeadAndPropagate(node, r);
p.next = null; // help GC
failed = false;
return;
}
}
if (shouldParkAfterFailedAcquire(p, node) &&
parkAndCheckInterrupt())
throw new InterruptedException();
}
} finally {
if (failed)
cancelAcquire(node);
}
}
这段代码是比较熟悉的在ReentrantLock中分析过,这里关键的点是parkAndCheckInterrupt()
/**
* Convenience method to park and then check if interrupted
*
* @return {@code true} if interrupted
*
*/
private final boolean parkAndCheckInterrupt() {
LockSupport.park(this);
return Thread.interrupted();
}
执行到此处时,线程会阻塞,知道有其他线程唤醒此线程,执行await之后,上文中的主线程阻塞在这。
接下来分析下countDown():
/**
* Decrements the count of the latch, releasing all waiting threads if
* the count reaches zero.
*
* <p>If the current count is greater than zero then it is decremented.
* If the new count is zero then all waiting threads are re-enabled for
* thread scheduling purposes.
*
* <p>If the current count equals zero then nothing happens.
*/
public void countDown() {
sync.releaseShared(1);
}
调用了Sync的releaseShared:
/**
* Releases in shared mode. Implemented by unblocking one or more
* threads if {@link #tryReleaseShared} returns true.
*
* @param arg the release argument. This value is conveyed to
* {@link #tryReleaseShared} but is otherwise uninterpreted
* and can represent anything you like.
* @return the value returned from {@link #tryReleaseShared}
*/
public final boolean releaseShared(int arg) {
if (tryReleaseShared(arg)) {
doReleaseShared();
return true;
}
return false;
}
接下来是tryReleaseShared
protected boolean tryReleaseShared(int releases) {
// Decrement count; signal when transition to zero
for (;;) {
int c = getState();
if (c == 0)
return false;
int nextc = c-1;
if (compareAndSetState(c, nextc))
return nextc == 0;
}
}
此方法是用CAS减小State的值。如果State=0那么尝试唤醒等待线程,执行doReleaseShared:
/**
* Release action for shared mode -- signal successor and ensure
* propagation. (Note: For exclusive mode, release just amounts
* to calling unparkSuccessor of head if it needs signal.)
*/
private void doReleaseShared() {
/*
* Ensure that a release propagates, even if there are other
* in-progress acquires/releases. This proceeds in the usual
* way of trying to unparkSuccessor of head if it needs
* signal. But if it does not, status is set to PROPAGATE to
* ensure that upon release, propagation continues.
* Additionally, we must loop in case a new node is added
* while we are doing this. Also, unlike other uses of
* unparkSuccessor, we need to know if CAS to reset status
* fails, if so rechecking.
*/
for (;;) {
Node h = head;
if (h != null && h != tail) {
int ws = h.waitStatus;
if (ws == Node.SIGNAL) {
if (!compareAndSetWaitStatus(h, Node.SIGNAL, 0))
continue; // loop to recheck cases
unparkSuccessor(h);
}
else if (ws == 0 &&
!compareAndSetWaitStatus(h, 0, Node.PROPAGATE))
continue; // loop on failed CAS
}
if (h == head) // loop if head changed
break;
}
}
这里需要关注一点就是unparkSuccessor,这个方法是唤醒上文中的主线程。至此countdownlatch的主流程就走通了。
不得不说countdownlatch是一个很高的线程控制工具,极大的方便了我们开发。由于知识能力有限,上面是自己的一点见识,有什么错误还望提出,便于我及时改进。
网友评论