大O符号是算法复杂度的相对表示,它描述了时空复杂度(时间复杂度/空间复杂度)。
大O符号是我在大学里学过的东西之一,我了解过这个算法的概念。我知道的不算多,可以回答一些基本的问题,仅此而已。从大学毕业以后,我对这个算法的了解基本没有改变,因为自从我开始工作以来,我没有使用过它,也没有听到任何同事提到过它。所以我想我应该花点时间回顾一下它,并在这篇文章中总结大O符号的基础知识,以及一些代码示例来帮助解释它。
什么是大O符号?简而言之:
-
它是算法复杂度的相对表示。
-
它描述了一个算法如何执行和缩放。
-
它描述了函数增长率的上限,可以考虑最坏的情况。
现在快速看一下语法:O(n2)。
n是函数作为输入接收的元素个数。这个例子是说,对于n个输入,它的复杂度等于n2。
共同复杂性的比较
从这个表中可以看出,随着函数复杂度的增加,完成一个函数所需的计算量或时间可能会显著增加。因此,我们希望将这种增长保持在尽可能低的水平,因为如果函数不能很好地伸缩而增加了输入,可能会出现性能问题。
显示操作数量如何随复杂性增加的图表一些代码示例应该有助于澄清一些关于复杂性如何影响性能的问题。下面的代码是用Java编写的,但是很明显,它可以用其他语言编写。
imageO(1)
public boolean isFirstNumberEqualToOne(List<Integer> numbers) {
return numbers.get(0) == 1;
}
O(1) 表示一个函数,无论输入大小如何,该函数总是取相同的值。
O(n)
public boolean containsNumber(List<Integer> numbers, int comparisonNumber) {
for(Integer number : numbers) {
if(number == comparisonNumber) {
return true;
}
}
return false;
}
O(n)表示一个函数的复杂度,该函数的复杂度与输入的个数成线性正比增长。这是一个很好的例子,说明大O符号如何描述最坏的情况,因为函数在读取第一个元素后返回true,或者在读取所有n个元素后返回false。
O(n2)
public static boolean containsDuplicates(List<String> input) {
for (int outer = 0; outer < input.size(); outer++) {
for (int inner = 0; inner < input.size(); inner++) {
if (outer != inner && input.get(outer).equals(input.get(inner))) {
return true;
}
}
}
return false;
}
O(n2) 表示一个函数,其复杂度与输入大小的平方成正比。通过输入添加更多的嵌套迭代将增加复杂性,然后可以用3次总迭代表示O(n3),用4次总迭代表示*O(n4) *。
public int fibonacci(int number) {
if (number <= 1) {
return number;
} else {
return fibonacci(number - 1) + fibonacci(number - 2);
}
}
O(2n) 表示一个函数,其性能对输入中的每个元素都加倍。这个例子是斐波那契数列的递归计算。函数属于O(2n),因为函数对每个输入数递归地调用自身两次,直到该数小于或等于1。
O(log n)
public boolean containsNumber(List<Integer> numbers, int comparisonNumber) {
int low = 0;
int high = numbers.size() - 1;
while (low <= high) {
int middle = low + (high - low) / 2;
if (comparisonNumber < numbers.get(middle)) {
high = middle - 1;
} else if (comparisonNumber > numbers.get(middle)) {
low = middle + 1;
} else {
return true;
}
}
return false;
}
O(log n)表示一个函数,该函数的复杂度随输入大小的增加呈对数增长。这使得O(log n)函数可以很好地伸缩,这样处理较大的输入就不太可能导致性能问题。
上面的示例使用二分查找来检查输入列表是否包含某个数字。简单地说,它在每次迭代中将列表一分为二,直到找到数字或读取最后一个元素。此方法具有与O(n)示例相同的功能,尽管实现完全不同且更难于理解。但是,这样做的回报是更大的输入会带来更好的性能(如表中所示)。
这种实现的缺点是二进制搜索依赖于元素已经处于正确的顺序。如果在遍历元素之前需要对元素进行排序,那么这就增加了一些开销。
网友评论