美文网首页计算机中的数学
证明如果级数和x在集合C中收敛,则x必定属于C

证明如果级数和x在集合C中收敛,则x必定属于C

作者: 久别重逢已经那边v发 | 来源:发表于2024-11-08 07:34 被阅读0次

假设C \subset \mathbb{R}^n 是凸集。设x_i \in C\theta_i \geq 0,\sum_{i=1}^\infty{\theta_i}=1。证明如果x = \sum_{i=1}^\infty{\theta_ix_i}收敛,那么x\in C

证:

1.对扩展到无穷和的合理性说明:

凸集对于有限个点的定义表明,对于任意两个点x,y∈C以及任意实数α满足0≤α≤1,有α x+(1−α)y∈C。对于有限个点x_{1},x_{2},\cdots,x_{k}∈C 以及非负的θ_{1},θ_{2},\cdots,θ_{k}\sum_{i=1}^{k} θ_{i}=1

那么\sum_{i=1}^{k} θ_{i}x_{i} \in C。现在考虑无穷和的情况。由于\sum_{i=1}^∞ θ_{i}x_{i}收敛,对于任意给定的ε>0,存在一个整数N,使得对于所有的m,n>N,有\left \| \sum_{i=1}^ mθ_{i}x_{i}-\sum_{i=1}^ nθ_{i}x_{i}\right \| <ε。这表明部分和序列是一个柯西序列。在\mathbb{R}^m 中,柯西序列收敛。设s_{n}=\sum_{i=1}^ nθ_{i} x_{i}。因为每个s_{n} 都是C 中各点的凸组合,所以对于所有的n,s_{n}都属于C。我们可以认为极限x=\lim_{n \to \infty} s_{n}可以被C中的元素任意逼近。

  1. 对凸集的闭性的澄清:

在像\mathbb{R}^{n}这样的有限维空间中,如果一个凸集包含它的所有极限点,那么它就是闭集。这是因为在有限维赋范空间中,一个集合是闭集当且仅当它是完备的。由于\mathbb{R}^{n}是完备的,并且凸集C \subset \mathbb{R}^{n}是由一组线性不等式定义的,所以可以证明C是闭半空间的交集,因此是闭集。

  1. 更严格地处理收敛性:

因为我们已经证明了部分和序列{s_{n}}收敛到x,并且每个s_{n} \in C。现在,由于C是闭集,它包含它的所有极限点。因此,x作为序列{s_{n}}的极限,必然属于C

结论:

综上,可以得出结论,如果x=\sum_{i=1}^{\infty}\limits \theta_ix_i在集合C中收敛,那么x一定属于C

解题思路:

设定与前提:

假设集合C是实数集\mathbb{R}^n的一个凸集。

给定任意x_i属于C,且存在θ_i≥0,满足∑θ_i = 1

考虑凸集的性质:

凸集C的定义是:对于C中的任意两点x和y,以及任意实数α0≤α≤1),都有αx+(1-α)y也属于C

由此,我们可以推断出,对于C中的任意有限个点x_i和满足∑θ_i = 1的非负实数θ_i,点x = ∑θ_i * x_i也必然属于C

收敛性的分析:

假设序列\{x_n\}= \{∑θ_i * x_i^{n}\}(其中x_i^{n}是C中的点,且θ_i满足上述条件)收敛于x

由于每个x_i^n都属于C,且C是凸集,因此每个x_n也都属于C

利用凸集的闭包性质:

凸集C不仅是凸的,还是闭的(在有限维空间中,凸集总是闭的)。

这意味着,如果序列\{x_n\}C中收敛,那么其极限点x也必然属于C

得出结论:

综合以上分析,我们可以得出结论:如果x = ∑θ_i * x_i在集合C中收敛,那么x必然属于C

分析:

这个证明的关键在于理解凸集的性质,特别是凸集的闭包性质。由于凸集在有限维空间中总是闭的,因此我们可以利用这一性质来推断收敛序列的极限点也属于凸集。此外,凸集的定义也为我们提供了判断点是否属于凸集的有效方法。

英文原始内容:

Suppose C \subset \mathbb{R}^n is convex. Let x_i \in C and \theta_i \geq 0, \sum_{i=1}^\infty \theta_i = 1. Show that if x = \sum_{i=1}^\infty \theta_ix_i converges, then x \in C.

Proof:

Let C \subset \mathbb{R}^n be a convex set. Let x_i \in C and \theta_i\geq0, such that \sum_{i=1}^\infty \theta_i = 1.

  1. Justification for extending to infinite sums:

The definition of convexity for a finite number of points states that for any two points x, y \in C and any real number \alpha with 0\leq\alpha\leq1, we have \alpha x + (1-\alpha)y \in C. For a finite set of points x_1,x_2,\ldots,x_k \in C and non-negative \theta_1,\theta_2,\ldots,\theta_k with \sum_{i=1}^k \theta_i = 1, it follows that \sum_{i=1}^k \theta_ix_i \in C. Now, consider the infinite sum case. As the sum \sum_{i=1}^{\infty} \theta_i x_i converges, for any given \varepsilon > 0, there exists an integer N such that for all m, n>N, \left\|\sum_{i=1}^{n} \theta_i x_i-\sum_{i=1}^{m} \theta_i x_i\right\|<\varepsilon. This shows that the sequence of partial sums is a Cauchy sequence. In \mathbb{R}^n, Cauchy sequences converge. Let s_n=\sum_{i=1}^{n} \theta_i x_i. Since each s_n is a convex combination of points in C and hence belongs to C for all n, we can think of the limit x=\lim_{n \to \infty} s_n as being approximated arbitrarily closely by elements in C.

  1. Clarification on closure of convex sets:

In finite-dimensional spaces like \mathbb{R}^n , a convex set is closed if it contains all its limit points. This follows from the fact that in a finite-dimensional normed space, a set is closed if and only if it is complete. Since \mathbb{R}^n is complete and a convex set C \subset \mathbb{R}^n is defined by a collection of linear inequalities, it can be shown that C is an intersection of closed half-spaces, and hence is closed.

  1. Handling convergence more rigorously:As we have shown that the sequence of partial sums {s_n} converges to x, and each s_n\in C. Now, since C is closed, it contains all its limit points. Therefore, x, being the limit of the sequence \left\{s_n\right\}, must belong to C.

Conclusion:In summary, we can conclude that if x=\sum_{i=1}^{\infty}a_ix_i converges in the set C, then x must belong to C.

相关文章

网友评论

    本文标题:证明如果级数和x在集合C中收敛,则x必定属于C

    本文链接:https://www.haomeiwen.com/subject/akxtjjtx.html