世纪之谜——《费马大定理》

作者: 中二的化学君 | 来源:发表于2017-12-04 10:22 被阅读476次
image.png

如果有一个人,你喜欢了八年她却如同铁石心肠,说她对你没有感觉,然而在第九年你坚持不懈的告白终于打动了她,你是一种怎样的感觉?

这种告白成功的喜悦,你一定会感到一种巨大而又满足的幸福感充盈全身,仿佛打通了任督二脉,又好似畅游在一片美丽的山谷,享受着迷人的芬芳。

对于很多数学家来讲,或许破解一道数学题就能让他们体会到这种人生的至高享受,冥思苦想八年就为了这一刻大脑中内啡肽的自然释放,这感觉如同吃完饭点上一根香烟一般令人享受。

怀尔斯一定是这群人其中之一。童年的梦想就是要彻底解决费马留下来的这道数学谜题。几百年来有多少骄傲的天才数学家想要彻底将其终结,然而终究陷于神秘的困境。

也许是因为费马是不世出的天才,一个没有接受正规的数学教育却凭借自身努力达到了专业数学家的程度,凭借着自己对数字的敏锐感觉写下了诸多重要的数学定理,却顽皮地没有留下证明,恶作剧一般地将这些迷题逐一留存,静静地等待岁月来证明。

他死后的几十年间,手稿上的结论逐一被验证,证实为同时代伟大的数学研究成果。但是只有一个结论坚如磐石,顽固的如同一个脾气暴躁的老者,前来试图获取正确的证明过程的人都一一无功而返。这道智力题很简单,就是要证明x的n次方与y的n次方之和等于z的n次方这个方程在n大于2的时候没有整数解。

一位叫欧拉的数学家首先承认了他的失败,他逐一验证这个方程式到8以上的时候发现工作量巨大,接着是勒布朗,还有拉格朗日,这些日后都赫赫有名的学者都接连折戟。费马大定理的证明好似一桩无头公案,积压在了数学家们的案头桌底,再也没有被翻开。19世纪的数学已经陷入了穷途末路,再也找不到更好的解决方案。怀尔斯准备学习新的工具来解决这一世纪迷题。

20世纪的日本数学界一度对古典的数论,代数和方程相关领域很感兴趣,在该领域内的研究成果层出不穷,也造就了很多殿堂级的数学家,其中有两个名字注定要镌刻在数学史的丰碑上——志村五郎和谷山丰,这两个绝世天才因为一本数学专著而结下永久的缘分。他们开创性地提出了数学模形式运算和椭圆曲线之间的本质性关联,从而将两个毫不关联的领域联系在了一起。

数学史上,怪才笛卡尔做过相同的贡献,创造性地将代数和几何联结在一起,提出了解析几何这一创造性的工具 ,从而将平面问题简化。长期以来,数学家们都在自己擅长的领域上下求索,相互之间不知道对方领域的内容,好似一座座孤岛,互相之间缺乏往来。志村和谷山发现了椭圆曲线和模运算之间的微妙关联,在他们之前模形式和椭圆方程属于数学世界中完全不同的领域,而在他们之后,模世界和椭圆世界就此统一。哈佛的巴里·休梅尔认为:“这是一个神奇的猜想,它一开始被忽略是因为它太超前于时代了,一方面是椭圆世界,一方面是完全不同的模世界,他们猜想在两个完全不同的世界之间存在一座桥。

1984年的数学家们聚集在一起,讨论谷山-志村猜想,他们讨论出一个令人惊奇的结论:如果我们可以证明出志村-谷山猜想,那么我们就可以证明出费马大定理。然而很少有人敢真的这样想,也很少有人真的敢这么做,而怀尔斯是少数敢这么想的数学家之一。

然而这一切并不是我们想象的这般简单。要完成一个世纪谜题的证明,其难度和追求一个配偶的难度不相上下。为此怀尔斯过上了与世隔绝的生活,每天在房子的顶楼上熟悉所有椭圆曲线的计算和模形式的运算。这是一个非常艰难的工作。每一天都可以陷入令人发狂的窘境,而似乎解决之后有伴随着令人愉悦的美好,如同和异性在微信中聊天一般,每天都心情迫切地期待着对方的回复,为对方说的每一句话而或喜或忧,怀尔斯的研究工作也让他喜怒无常,难以捉摸。除了他的妻子,其他人都不知道他自己在完成这个浩大的工程。

1990年,他的工作陷入了困境。他难以通过归纳法证明模和椭圆曲线方程之间的关联,他甚至开始认为即使他的思路正确,目前这个时代也无法提供更好的工具解决问题。他的导师尼茨给了他灵感,他告诉怀尔斯有人在用科利瓦金的方法来分析椭圆方程。他开始求助于代数和几何方向的大师来和自己合作,在长达六个月的时间里,他解决了几乎所有的椭圆方程,只剩下一族椭圆方程拒绝向这个方法让步。研究再一次停滞不前。

所有的伟大发现之前,仿佛都伴随着一个奇怪的梦境,或者一个令人感动的场景。凯库勒在做梦的时候,发现了几只猴子首尾连接的样子,让他迅速想到了苯环的结构。牛顿在苹果树下的小憩,掉落的苹果让他获取了万有引力的灵感,这一切仿佛都是顺理成章。而怀尔斯,则是在五月一个惬意的午后,孩子们玩耍的下午,他一个人坐在阳光下,想到了巴里的一篇论文当中,叙述了19世纪的方法可以解决最后一族的椭圆方程,他一直工作到下午甚至忘记了时间,当她妻子叫他的时候,他微笑着说”我解决了费马大定理“。

最后怀尔斯的演讲在剑桥举行。这场演讲的标题是”模形式、椭圆曲线和伽罗瓦表示“,以此证明三个卓越数学家的贡献。所有的戏剧都将谢幕,所有的高潮都将归于平静。世界仍在运转,地球仍在转动。不同的是,数学史上又翻开了新的篇章。

我曾经很长时间都相信,科学本身,就是一场终极的竞技游戏,或许我们对此的追求和那些玩游戏的硬核玩家寻求胜利并没有本质区别,最终的胜利本身就会让我们感到无比快乐。怀尔斯的对费马大定理的证明过程更加让我坚信这一点。

驱动人类探索的动力,一定是纯粹的欲望而非责任感。

相关文章

  • 世纪之谜——《费马大定理》

    如果有一个人,你喜欢了八年她却如同铁石心肠,说她对你没有感觉,然而在第九年你坚持不懈的告白终于打动了她,你是一种怎...

  • 计算机中的数学【费马大定理】 数学史上最著名的定理: x^n +

    费马大定理,又被称为“费马最后的定理”,由17世纪法国数学家皮耶·德·费玛提出。 x^n + y^n = z^n ...

  • 费马大定理

    费马大定理,又被称为“费马最后的定理”,由17世纪法国数学家皮耶·德·费玛提出。 它断言当整数n >2时,关于x,...

  • 又收到简书礼物

    费马大定理,又被称为“费马最后的定理”,由17世纪法国数学家皮耶·德·费玛提出。 它断言当整数n >2时,关于x,...

  • 数论四大定理

    威尔逊定理、欧拉定理、孙子定理、费马小定理

  • 《费马大定理》有感

    总起: 《费马大定理》是一本由辛格写的关于证明费马大定理的历史的书。 从费马大定理的起源,数学界对它的探索,到最终...

  • 2019-04-09

    今日打卡 1、收获 今天第一节课是初等数论。今天我们讲的是小费马定理和大费马定理。一开始我们对这些理定理,不是非常...

  • 资格赛 A题

    画图说话: 分析:9937 为质数,费马小定理+逆元,除法变乘法,快速幂取余 费马小定理 公式推导:(b/a)mo...

  • 费马的《费马大定理》

    继毕达哥拉斯定理后(勾股定理),数学家猜想三次方方程有没有三元组的解,之后便是无休止的证明与被推翻,始终没有办法解...

  • 费马大定理

    大部头

网友评论

    本文标题:世纪之谜——《费马大定理》

    本文链接:https://www.haomeiwen.com/subject/aplbbxtx.html