n级行列式的性质
性质1:行列互换,行列式不变,即
在右端位于第j行,第i列,即i为列指标,j为行指标
所以右端展开等于
正是左端的展开式
定义:上式右端行列式称为左端行列式的转置行列式
注:
1.行列式转置,值不变
2.行列式中行与列的地位是对称的,凡是有关行的性质,对列也同样成立
例:
由
性质2:
证明:
令k=0可得,若行列式中一行为零,则行列式为零
性质3:
证明:
性质4:若行列式中有两行相同,则行列式为零
证明:
性质5:若行列式中两行成比例,则行列式为零
证明:
性质6:把一行的倍数加到另一行,行列式不变
证明:
性质7:对换行列式中两行的位置,行列式反号
证明:
例:
解:
反称行列式
定义:给定n级行列式,满足,,则称为反称行列式
例:证明奇数反称行列式等于0
证:
网友评论