美文网首页数据科学家@IT·互联网语言
TensorFlow-10-基于 LSTM 建立一个语言模型

TensorFlow-10-基于 LSTM 建立一个语言模型

作者: 不会停的蜗牛 | 来源:发表于2017-05-21 00:28 被阅读1262次

今日资料:
https://www.tensorflow.org/tutorials/recurrent
中文版:
http://wiki.jikexueyuan.com/project/tensorflow-zh/tutorials/recurrent.html
代码:
https://github.com/tensorflow/models/blob/master/tutorials/rnn/ptb/ptb_word_lm.py

今天的内容是基于 LSTM 建立一个语言模型

人每次思考时不会从头开始,而是保留之前思考的一些结果,为现在的决策提供支持。RNN 的最大特点是可以利用之前的信息,即模拟一定的记忆,具体可以看我之前写过的这篇文章:
详解循环神经网络(Recurrent Neural Network)
http://www.jianshu.com/p/39a99c88a565

RNN 虽然可以处理整个时间序列信息,但是它记忆最深的还是最后输入的一些信号,而之前的信号的强度就会越来越低,起到的作用会比较小。
LSTM 可以改善长距离依赖的问题,不需要特别复杂的调试超参数就可以记住长期的信息。关于 LSTM 可以看这一篇文章:
详解 LSTM
http://www.jianshu.com/p/dcec3f07d3b5

今天要实现一个语言模型,它是 NLP 中比较重要的一部分,给上文的语境后,可以预测下一个单词出现的概率。


首先下载 ptb 数据集,有一万个不同的单词,有句尾的标记,并且将罕见的词汇统一处理成特殊字符;

$ wget http://www.fit.vutbr.cz/~imikolov/rnnlm/simple-examples.tgz
$ tar xvf simple-examples.tgz

PTBInput,
定义语言模型处理输入数据的一些参数,包括 LSTM 的展开步数 num_steps,用 reader.ptb_producer 读取数据和标签:

PTBModel,
def __init__(self, is_training, config, input_) 包括三个参数,训练标记,配置参数以及输入数据的实例;
把这几个变量读取到本地,hidden_size 是隐藏层的节点数,vocab_size 是词汇表的大小;

def lstm_cell(),设定基本的 LSTM 单元,用的是 tf.contrib.rnn.BasicLSTMCell
如果 if is_training and config.keep_prob < 1 这个条件的话,在 LSTM 单元后面可以加一个 dropout 层;
再用 tf.contrib.rnn.MultiRNNCell 把多层的 LSTM 堆加到一起;
cell.zero_state 将 LSTM 的初始状态设置为0;

接下来是 embedding 矩阵,行数是词汇表的大小,列数是每个单词的向量表达的维度,在训练过程中,它可以被优化和更新;

接下来我们要定义输出,限制一下反向传播时可以展开的步数,将 inputs 和 state 传到 LSTM,然后把输出结果添加到 outputs 的列表里;

然后将输出的内容串到一起,接下来 softmax 层,接着要定义损失函数 loss,它的定义形式是这样的:

然后我们要加和整个 batch 的误差,再平均到每个样本的误差,并且保留最终的状态,如果不是训练状态就直接返回;

接下来是定义学习速率,根据前面的 cost 计算一下梯度,并将梯度的最大范数设置好,相当于正则化的作用,可以防止梯度爆炸;

这个学习速率还可以更新,将其传入给 _new_lr,再执行 _lr_update 完成修改:

接下来可以定义几种不同大小的模型的参数,其中有学习速率,还有梯度的最大范数,还是 LSTM 的层数,反向传播的步数,隐含层节点数,dropout 保留节点的比例,学习速率的衰减速度:

run_epoch,是定义训练一个 epoch 数据的函数,首先初始化 costs 还有 iters,state;
将 LSTM 的所有 state 加入到 feed_dict 中,然后会生成结果的字典表 fetches,其中会有 cost 和 final_state
每完成 10% 的 epoch 就显示一次结果,包括 epoch 的进度,perplexity(是cost 的自然常数指数,这个指标越低,表示预测越好),还有训练速度(单词数每秒):

main() 中:
reader.ptb_raw_data 读取解压后的数据;
得到 train_data, valid_data, test_data 数据集;

用 PTBInput 和 PTBModel 分别定义用来训练的模型 m,验证的模型 mvalid,测试的模型 mtest;

m.assign_lr 对 m 应用累计的 learning rate;

每个循环内执行一个 epoch 的训练和验证,输出 Learning rate,Train Perplexity, Valid Perplexity。


推荐阅读 历史技术博文链接汇总
http://www.jianshu.com/p/28f02bb59fe5
也许可以找到你想要的

相关文章

  • TensorFlow-10-基于 LSTM 建立一个语言模型

    今日资料:https://www.tensorflow.org/tutorials/recurrent中文版:ht...

  • DDD简述

    消化知识 有效建模的要素 模型和实现的绑定 建立了一种基于模型的语言 开发一个蕴含丰富知识的模型 提炼模型 头脑风...

  • 一种使用快速、简单有效的文本分类方法

    问题及需求 使用CNN,LSTM,Attention based model建立一个文本分类深度模型固然很好很强大...

  • 基于Bi-LSTM的文本情感分类

    参考:一维卷积网络IMDB情感分析双向LSTM情感分类模型利用DNN对EMAIL分类基于Keras构建RNN模型 ...

  • 第一章 消化知识

    1.有效建模的要素<1> 模型和实现的绑定<2>建立一种基于模型的语言<3>开发一个蕴含丰富知识的模型<4>提炼模...

  • 领域驱动设计

    前提 建立通用的语言 领域驱动设计的一个核心的原则是使用一种基于模型的语言。因为模型是软件满足领域的共同点,它很适...

  • [fairseq] tutorial

    首先学习一下官方的LSTM的教程 建立一个encoder和decoder模型,分别要继承FairseqEncode...

  • 理解LSTM网络(整合)

    LSTM 已经在科技领域有了多种应用。基于 LSTM 的系统可以学习翻译语言、控制机器人、图像分析、文档摘要、语音...

  • 浅谈Objective-C中的类与对象

    我们都知道,Objective-C是一门基于C语言的面向对象的语言,它的对象模型是基于类来建立的。我们可以在苹果开...

  • AWD-LSTM为什么这么棒?

    摘要:AWD-LSTM为什么这么棒,看完你就明白啦! AWD-LSTM是目前最优秀的语言模型之一。在众多的顶会论文...

网友评论

  • IT_xiao小巫:如果要预测具体要怎么做? 比如我要预测一个句子的ppl值。另外您有尝试过中文的RNN语言模型训练吗,跟这个有什么不同?
  • PassionateLee:@牛牛姐,代码中每次训练一个batch size的数据,训练一次就迭代更新参数一次,如果我的steps设置为50000,那么我就相当于迭代更新50000次么?但是实际上,我们的数据量并没有50000*Batch size这么多啊?
    另外我想一个个句子用lstm训练,我已经分好词了,但是每个句子中词数目不一样。这种情况该怎么处理啊?
  • 维真_dfb9:https://github.com/caicloud/tensorflow-tutorial/issues/28 这里是我在他们的github上问的问题
    维真_dfb9:@不会停的蜗牛 好用了,不过只训练了两轮就结束了,感觉好奇怪,
    In iteration:1
    after 0tep ,perplexity is 9984.952
    Epoch: 1 Validation Perplexity : 2210.015
    In iteration:2
    after 0tep ,perplexity is 6050.431
    Epoch: 2 Validation Perplexity : 415.539
    Test Perplexity:416.213
    不会停的蜗牛:@维真_dfb9 你试过这个了么:https://github.com/tensorflow/tensorflow/issues/8191
  • 维真_dfb9:姐 有没有github呀?其实我想说上个礼拜就照着tensorflow实战的那本书(彩云科技的那个哥哥写的,据说那个哥哥是在谷歌干了好几年回国创业的)敲的代码,结果训练的时候说我的变量reuse有问题,然后就一直没跑通

本文标题:TensorFlow-10-基于 LSTM 建立一个语言模型

本文链接:https://www.haomeiwen.com/subject/bmqmxxtx.html