import tensorflow as tf
import numpy as np
from tensorflow.contrib import rnn
from tensorflow.examples.tutorials.mnist import input_data
#设置GPU按需增长
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
sess = tf.Session(config=config)
mnist = input_data.read_data_sets('MNIST_data',one_hot=True)
lr = 1e-3
# 在训练和测试的时候,我们想用不同的 batch_size.所以采用占位符的方式
batch_size = tf.placeholder(tf.int32) # 注意类型必须为 tf.int32
# batch_size = 128
# 每个时刻的输入特征是28维的,就是每个时刻输入一行,一行有 28 个像素
input_size = 28
# 时序持续长度为28,即每做一次预测,需要先输入28行
timestep_size = 28
# 隐含层的数量
hidden_size = 256
# LSTM layer 的层数
layer_num = 3
# 最后输出分类类别数量,如果是回归预测的话应该是 1
class_num = 10
_X = tf.placeholder(tf.float32, [None, 784])
y = tf.placeholder(tf.float32, [None, class_num])
keep_prob = tf.placeholder(tf.float32)
# 把784个点的字符信息还原成 28 * 28 的图片
# 下面几个步骤是实现 RNN / LSTM 的关键
####################################################################
# **步骤1:RNN 的输入shape = (batch_size, timestep_size, input_size)
X = tf.reshape(_X, [-1, 28, 28])
# # **步骤2:定义一层 LSTM_cell,只需要说明 hidden_size, 它会自动匹配输入的 X 的维度
# lstm_cell = rnn.BasicLSTMCell(num_units=hidden_size, forget_bias=1.0, state_is_tuple=True)
# # **步骤3:添加 dropout layer, 一般只设置 output_keep_prob
# lstm_cell = rnn.DropoutWrapper(cell=lstm_cell, input_keep_prob=1.0, output_keep_prob=keep_prob)
# # **步骤4:调用 MultiRNNCell 来实现多层 LSTM
# mlstm_cell = rnn.MultiRNNCell([lstm_cell] * layer_num, state_is_tuple=True)
# mlstm_cell = rnn.MultiRNNCell([lstm_cell for _ in range(layer_num)] , state_is_tuple=True)
# 在 tf 1.0.0 版本中,可以使用上面的 三个步骤创建多层 lstm, 但是在 tf 1.1.0 版本中,可以通过下面方式来创建
def lstm_cell():
cell = rnn.LSTMCell(hidden_size, reuse=tf.get_variable_scope().reuse)
return rnn.DropoutWrapper(cell, output_keep_prob=keep_prob)
mlstm_cell = tf.contrib.rnn.MultiRNNCell([lstm_cell() for _ in range(layer_num)], state_is_tuple = True)
# **步骤5:用全零来初始化state
init_state = mlstm_cell.zero_state(batch_size, dtype=tf.float32)
# **步骤6:方法一,调用 dynamic_rnn() 来让我们构建好的网络运行起来
# ** 当 time_major==False 时, outputs.shape = [batch_size, timestep_size, hidden_size]
# ** 所以,可以取 h_state = outputs[:, -1, :] 作为最后输出
# ** state.shape = [layer_num, 2, batch_size, hidden_size],
# ** 或者,可以取 h_state = state[-1][1] 作为最后输出
# ** 最后输出维度是 [batch_size, hidden_size]
# outputs, state = tf.nn.dynamic_rnn(mlstm_cell, inputs=X, initial_state=init_state, time_major=False)
# h_state = state[-1][1]
# *************** 为了更好的理解 LSTM 工作原理,我们把上面 步骤6 中的函数自己来实现 ***************
# 通过查看文档你会发现, RNNCell 都提供了一个 __call__()函数,我们可以用它来展开实现LSTM按时间步迭代。
# **步骤6:方法二,按时间步展开计算
outputs = list()
state = init_state
with tf.variable_scope('RNN'):
for timestep in range(timestep_size):
if timestep > 0:
tf.get_variable_scope().reuse_variables()
# 这里的state保存了每一层 LSTM 的状态
(cell_output, state) = mlstm_cell(X[:, timestep, :],state)
outputs.append(cell_output)
h_state = outputs[-1]
############################################################################
# 以下部分其实和之前写的多层 CNNs 来实现 MNIST 分类是一样的。
# 只是在测试的时候也要设置一样的 batch_size.
# 上面 LSTM 部分的输出会是一个 [hidden_size] 的tensor,我们要分类的话,还需要接一个 softmax 层
# 首先定义 softmax 的连接权重矩阵和偏置
# out_W = tf.placeholder(tf.float32, [hidden_size, class_num], name='out_Weights')
# out_bias = tf.placeholder(tf.float32, [class_num], name='out_bias')
# 开始训练和测试
W = tf.Variable(tf.truncated_normal([hidden_size, class_num], stddev=0.1), dtype=tf.float32)
bias = tf.Variable(tf.constant(0.1,shape=[class_num]), dtype=tf.float32)
y_pre = tf.nn.softmax(tf.matmul(h_state, W) + bias)
# 损失和评估函数
cross_entropy = -tf.reduce_mean(y * tf.log(y_pre))
train_op = tf.train.AdamOptimizer(lr).minimize(cross_entropy)
correct_prediction = tf.equal(tf.argmax(y_pre,1), tf.argmax(y,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
sess.run(tf.global_variables_initializer())
for i in range(2000):
_batch_size = 128
batch = mnist.train.next_batch(_batch_size)
if (i+1)%200 == 0:
train_accuracy = sess.run(accuracy, feed_dict={
_X:batch[0], y: batch[1], keep_prob: 1.0, batch_size: _batch_size})
# 已经迭代完成的 epoch 数: mnist.train.epochs_completed
print ("Iter%d, step %d, training accuracy %g" % ( mnist.train.epochs_completed, (i+1), train_accuracy))
sess.run(train_op, feed_dict={_X: batch[0], y: batch[1], keep_prob: 0.5, batch_size: _batch_size})
# 计算测试数据的准确率
print ("test accuracy %g"% sess.run(accuracy, feed_dict={
_X: mnist.test.images, y: mnist.test.labels, keep_prob: 1.0, batch_size:mnist.test.images.shape[0]}))
本代码节选自github连接:https://github.com/yongyehuang/Tensorflow-Tutorial
网友评论