exprSet['GAPDH',]
exprSet['ACTB',]
boxplot(exprSet,las=2)
ggplot2 探索数据
if(T){
gene_expression<- as.data.frame(exprSet['COL11A1',])
gene_expression$group<- group_list
exprSet_L<- melt(gene_expression)
names(exprSet_L)[2]<- c('sample')
p=ggplot(exprSet_L,aes(x=sample,y=value,fill=group))+geom_boxplot()
print(p)}
logFC_cutoff <- with(DEG,mean(abs( logFC)) + 2*sd(abs( logFC)) )
DEG$change = as.factor(ifelse(DEG$P.Value < 0.05 & abs(DEG$logFC) > logFC_cutoff,
ifelse(DEG$logFC > logFC_cutoff ,'UP','DOWN'),'NOT')
做成合并的图
gene_name<- c('PLAU','SPP1','BGN','NDC80','BUB1B','KIF2C','AURKB','BUB1','CXCL1','CXCL10','CXCL8','MMP9','CDC6','MCM10','MCM2')
library(reshape2)
if(T){
gene_expression<- as.data.frame(t(exprSet[gene_name,]))
match(colnames(exprSet),phe$submitter_id.samples)
gene_expression$group<- factor(phe$group_list,levels = c('tumor','normal'))
# gene_expression$samlple<- rownames(gene_expression)
exprSet_L<- melt(gene_expression,id.vars = c('group'))
names(exprSet_L)[2]<- c('sample')
p=ggplot(exprSet_L,aes(x=sample,y=value,fill=group))+geom_boxplot()+ stat_compare_means(method = "wilcox.test",label="p.signif")
ggsave('./figure/multi_gene_ggplot.pdf', p)
print(p)
}
exprSet_L
最终效果
# # Example 2
# #::::::::::::::::::::::::::::::::::::::::::
# ToothGrowth
# class(ToothGrowth)
# ggpaired(ToothGrowth, x = "supp", y = "len",
# color = "supp", line.color = "gray",
# facet.by = "dose",
# line.size = 0.4,
# palette = "npg")
####################################### 单基因的表达
rm(list = ls())
load(file = './Rdata/step0.Rdata')
load(file = './Rdata/@step00_idtransed.Rdata')
exprSet[1:4,1:4]
########### 探索数据 配对数据
# gene_name<- c('PLAU','SPP1','BGN','NDC80')
# gene_name<- c('BUB1B','KIF2C','AURKB','BUB1','CXCL1','CXCL10','CXCL8','MMP9','CDC6','MCM10','MCM2')
gene_name<- c('PLAU','SPP1','BGN','NDC80','BUB1B','KIF2C','AURKB','BUB1','CXCL1','CXCL10','CXCL8','MMP9','CDC6','MCM10','MCM2')
library(ggpubr)
library(ggplot2)
library(reshape2)
if(T){
gene_expression<- as.data.frame(t(exprSet[gene_name,]))
match(colnames(exprSet),sample_id$V1)
gene_expression$group<- factor(sample_id$V2)
gene_expression$ID<- sample_id$V6
# gene_expression$samlple<- rownames(gene_expression)
exprSet_L<- melt(gene_expression,id.vars = c('group','ID'))
names(exprSet_L)[3]<- c('gene')
exprSet_L<- exprSet_L[order(exprSet_L$group),]
# ID 在数据框中,才能保证正确排序
# 排序这一步很重要
p=ggpaired(exprSet_L, x="group", y="value", color = "group",
facet.by = "gene",
line.color = "gray",
line.size = 0.4, palette = "jco")+
stat_compare_means(paired = TRUE,method = "wilcox.test",label="p.signif")
print(p)
}
ggsave('./figure/ggplot_boxplot_paired_test.pdf',p,width = 20, height = 60, units = "cm")
?ggplot
?ggsave
最终效果
image.png添加注释
https://www.shixiangwang.top/post/ggpubr-add-pvalue-and-siglevels/
http://www.sthda.com/english/wiki/comparing-means-in-r
https://zhuanlan.zhihu.com/p/27491381
- Comparing one-sample mean to a standard known mean:
- Comparing the means of two independent groups:
- Comparing the means of paired samples:
- Comparing the means of more than two groups
- Analysis of variance (ANOVA, parametric):
- Kruskal-Wallis Test in R (non parametric alternative to one-way ANOVA)
网友评论