9 可视化数据探索 R作图ggplot

作者: 陈宇乔 | 来源:发表于2019-05-02 12:01 被阅读27次
    exprSet['GAPDH',]
    exprSet['ACTB',]
    boxplot(exprSet,las=2)
    

    ggplot2 探索数据

    
    if(T){
      gene_expression<- as.data.frame(exprSet['COL11A1',])
      gene_expression$group<- group_list
      exprSet_L<- melt(gene_expression)
      names(exprSet_L)[2]<- c('sample')
      p=ggplot(exprSet_L,aes(x=sample,y=value,fill=group))+geom_boxplot()
      print(p)}
    
    logFC_cutoff <- with(DEG,mean(abs( logFC)) + 2*sd(abs( logFC)) )
    
    DEG$change = as.factor(ifelse(DEG$P.Value < 0.05 & abs(DEG$logFC) > logFC_cutoff,
                                  ifelse(DEG$logFC > logFC_cutoff ,'UP','DOWN'),'NOT')
    

    做成合并的图

    gene_name<- c('PLAU','SPP1','BGN','NDC80','BUB1B','KIF2C','AURKB','BUB1','CXCL1','CXCL10','CXCL8','MMP9','CDC6','MCM10','MCM2')
    library(reshape2)
    
    if(T){
      gene_expression<- as.data.frame(t(exprSet[gene_name,]))
      match(colnames(exprSet),phe$submitter_id.samples)
      gene_expression$group<- factor(phe$group_list,levels = c('tumor','normal'))
      # gene_expression$samlple<- rownames(gene_expression)
      exprSet_L<- melt(gene_expression,id.vars = c('group'))
      names(exprSet_L)[2]<- c('sample')
      p=ggplot(exprSet_L,aes(x=sample,y=value,fill=group))+geom_boxplot()+ stat_compare_means(method = "wilcox.test",label="p.signif")
      ggsave('./figure/multi_gene_ggplot.pdf', p)
      print(p)
    }
    
    
    exprSet_L 最终效果
    # # Example 2
    # #::::::::::::::::::::::::::::::::::::::::::
    # ToothGrowth
    # class(ToothGrowth)
    # ggpaired(ToothGrowth, x = "supp", y = "len",
    #          color = "supp", line.color = "gray", 
    #          facet.by = "dose",
    #          line.size = 0.4,
    #          palette = "npg")
    #######################################  单基因的表达
    rm(list = ls())
    
    load(file = './Rdata/step0.Rdata')
    load(file = './Rdata/@step00_idtransed.Rdata')
    
    exprSet[1:4,1:4]
    
    ########### 探索数据 配对数据
    # gene_name<- c('PLAU','SPP1','BGN','NDC80')
    # gene_name<- c('BUB1B','KIF2C','AURKB','BUB1','CXCL1','CXCL10','CXCL8','MMP9','CDC6','MCM10','MCM2')
    gene_name<- c('PLAU','SPP1','BGN','NDC80','BUB1B','KIF2C','AURKB','BUB1','CXCL1','CXCL10','CXCL8','MMP9','CDC6','MCM10','MCM2')
    library(ggpubr)
    library(ggplot2)
    library(reshape2)
    if(T){
      gene_expression<- as.data.frame(t(exprSet[gene_name,]))
      match(colnames(exprSet),sample_id$V1)
      gene_expression$group<- factor(sample_id$V2)
      gene_expression$ID<- sample_id$V6
      # gene_expression$samlple<- rownames(gene_expression)
      exprSet_L<- melt(gene_expression,id.vars = c('group','ID'))
      names(exprSet_L)[3]<- c('gene')
      exprSet_L<- exprSet_L[order(exprSet_L$group),]
      # ID 在数据框中,才能保证正确排序
      # 排序这一步很重要
      p=ggpaired(exprSet_L, x="group", y="value", color = "group", 
                 facet.by = "gene",
                 line.color = "gray", 
                 line.size = 0.4, palette = "jco")+ 
        stat_compare_means(paired = TRUE,method = "wilcox.test",label="p.signif")
      print(p)
    }
    ggsave('./figure/ggplot_boxplot_paired_test.pdf',p,width = 20, height = 60, units = "cm")
    
    ?ggplot
    ?ggsave
    
    
    
    

    最终效果

    image.png

    添加注释

    https://www.shixiangwang.top/post/ggpubr-add-pvalue-and-siglevels/
    http://www.sthda.com/english/wiki/comparing-means-in-r
    https://zhuanlan.zhihu.com/p/27491381

    image.png

    相关文章

      网友评论

        本文标题:9 可视化数据探索 R作图ggplot

        本文链接:https://www.haomeiwen.com/subject/cwognqtx.html