欧拉定理

作者: 雨落八千里 | 来源:发表于2019-09-26 23:23 被阅读0次

欧拉函数

  • 欧拉函数φ(n)(n∈N ^∗)是小于等于n 的正整数中与 n 互质的数的个数。

欧拉定理

  • 对于任意互素的 an,有a^{φ(n)}≡1\ (mod\ \ n)


参考链接

费马小定理

  • p为质数,则
    a^{p-1}≡1\ (mod \ \ \ p)

因为φ(p)=p-1

欧拉函数性质

  1. φ(1)=1

  2. 对于任何质数p都有φ(p)=p-1

  3. 如果数n=p^x(p为质数),那么φ(n)=p^x-p^{x-1}=p^x*(1-1/p)
    证明:
    因为数n只有p这个质因子,所以在1~p^x中只要找出没有p这个因子的数的个数就是φ(n)
    φ(n)=p^x-count(p,2p,...xp...,p^{x-1}*p)=p^x-p^{x-1}

  4. 如果数n=p*q,gcd(p,q)=1,那么φ(n)=φ(p)*φ(q)(欧拉函数的积性函数)

  5. 任意一个大于1的正整数n都可以分解一系列质数的积的形式如:
    n=p_1^{k_1}*p_2^{k_2}*...*p_n^{k_n}(其中p_1,p_2...p_n都是质数)
    根据欧拉函数的积性函数
    φ(n)=φ(p_1^{k_1})*φ(p_2^{k_2})*...*φ(p_n^{k_n})
    根据性质3
    φ(p_1^{k_1})=p_1^{k_1}*(1-1/p_1)
    所以可得
    φ(n)=p_1^{k_1}*p_2^{k_2}*...*p_n^{k_n}*(1-1/p_1)*(1-1/p_2)*...*(1-1/p_n)
    所以
    φ(n)=n*(1-1/p_1)*(1-1/p_2)*...*(1-1/p_n)

#include<bits/stdc++.h>
#define ll long long
using namespace std;
int n;
ll ol(int x)
{
    int res=x;
    ll ans=x;
    for(int i=2;i*i<=res;i++)
    {
        if(x%i==0)
        {
            ans=ans*(i-1)/i;
        }
        while(x%i==0)
        {
            x/=i;
        }
    }
    if(x>1)
    {
        ans=ans*(x-1)/x;
    }
    return ans;
}
int main( )
{
    while(~scanf("%d",&n))
    {
        printf("%lld\n",ol(n));
    }
    return 0;
}

扩展欧拉定理(欧拉降幂)

a^b≡\begin{cases} a^{b\%φ(p)}\ \ (mod \ \ p)\ \ \ \ \ \ \ gcd(a,p)=1\\ a^b\ \ \ \ \ \ (mod\ \ \ p) \ \ \ \ \ \ gcd(a,p)!=1&&b<φ(p)\\ a^{b\%φ(p)+φ(p)}\ \ \ \ (mod\ \ \ p)\ \ \ \ \ gcd(a,p)!=1&&b>=φ(p)\end{cases}

等式中的gcd(a,p)!=1表示a,p可以不互质
证明链接

运用:

  • A^B\%C中的Bd=的数特别大,就要使用欧拉降幂了

洛谷P5091

#include<bits/stdc++.h>
#define ll long long
using namespace std;
ll a;
char b[20000010];
ll c;
ll ol(int x)
{
    int res=x;
    ll ans=x;
    for(int i=2; i*i<=res; i++)
    {
        if(x%i==0)
        {
            ans=ans*(i-1)/i;
        }
        while(x%i==0)
        {
            x/=i;
        }
    }
    if(x>1)
    {
        ans=ans*(x-1)/x;
    }
    return ans;
}
ll pow(int a,ll n,int mod)
{
    ll ans=1;
    ll base=a;
    while(n)
    {
        if(n&1)
        {
            ans=ans*base%mod;
        }
        base=base*base%mod;
        n>>=1;
    }
    return ans%mod;
}
int main( )
{
    int flag=0;
    scanf("%d %d %s",&a,&c,&b);
    ll phi=ol(c);
    int len=strlen(b);
    ll cnt=0;
    for(int i=0; i<len; i++)
    {
        cnt=cnt*10+b[i]-'0';
        if(cnt>=phi)
        {
            flag=1;
            break;
        }
    }
    if(flag==1)
    {
        ll ans=0;
        for(int i=0; i<len; i++)
        {
            ans=(ans*10+b[i]-'0')%phi;
        }
        ans+=phi;
        printf("%lld\n",pow(a,ans,c));
    }
    else//b<φ(p)
    {
        printf("%lld\n",pow(a,cnt,c));   
    }
    return 0;
}

相关文章

  • 数论四大定理

    威尔逊定理、欧拉定理、孙子定理、费马小定理

  • 欧拉定理

    欧拉函数欧拉函数是小于等于 的正整数中与 互质的数的个数。 欧拉定理对于任意互素的 和 ,有参考链接费马小定理...

  • 补充:复数、欧拉公式、棣美弗定理

    复数 欧拉公式 棣美弗定理

  • 同余方程(组)

    第二章 同余 欧拉-费马定理 定理1 (i)欧拉函数 是积性的,即如果 ,则有 (ii)设 是 的标准分解,...

  • 关于RSA的学习整理

    一、RSA原始模型整理 1. 基础理论:欧拉函数与欧拉定理 欧拉函数:,表示[1,n)中与n互素的数的个数。显然若...

  • 数论四大定理之欧拉定理

    本文分为两个部分,第一部分介绍欧拉定理的证明,第二部分介绍欧拉函数的求法。 欧拉函数 欧拉函数是小于等于 n 的正...

  • rsa与欧拉定理

    RSA非对称加密 欧拉函数 φ(n)= n - 1(n为质数的时候)(例如:φ(7)=6;φ(4)=2)φ(n)=...

  • super_log(欧拉降幂)

    super_log题意:根据题面可以推出一个公式其中的个数是,输出思路:欧拉降幂(广义欧拉定理)=其中 结构1 结...

  • 费马小定理与欧拉定理

    定义若整数a和整数b,除以正整数m得到的余数相等,称为a,b模m同余,记作。费马小定理若p为质数,a是任意整数并且...

  • RSA的数学基础

    概要 RSA是一种非对称加密算法,非常普遍,主要涉及的数学知识 互质 欧拉函数 欧拉定理 互质 概念:两个正整数,...

网友评论

    本文标题:欧拉定理

    本文链接:https://www.haomeiwen.com/subject/eiedyctx.html