吴恩达机器学习——绪论

作者: 糖醋排骨盐酥鸡 | 来源:发表于2019-07-03 11:29 被阅读0次

开始学习机器学习,之前在网上找了好久的资料,发现还是吴恩达讲的机器学习更容易被理解。现在网易云课堂出了中文字幕版的吴恩达机器学习了。同时,我推荐github上的一个项目:AiLearning,可以跟着这个学习。

开始正文

第一章是绪论,初识机器学习,讲了三个点:

什么是机器学习

定义(总共给了两个定义,但我觉得只要记得最新的一个定义就可以了):A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E.


示例

playing checkers.
E = the experience of playing many games of checkers
T = the task of playing checkers.
P = the probability that the program will win the next game.


分类:Supervised learning and Unsupervised learning.

监督学习

定义&应用场景: we are given a data set and already know what our correct output
should look like, having the idea that there is a relationship between the input and the output.
PS:其他的定义我也看了,还是吴恩达教授的原话说的更容易让人明白


实质:Supervised learning problems are categorized into "regression" and "classification" problems.

In a regression problem, we are trying to predict results within a continuous output, meaning that we are trying to map input variables to some continuous function.
In a classification problem, we are instead trying to predict results in a discrete output. In other words, we are trying to map input variables into discrete categories
将监督学习分为回归问题和分类问题两大类:主要的依据就是数据是否可连续性的表达

无监督学习

定义&应用场景: Unsupervised learning allows us to approach problems with little or no idea what our results should look like. We can derive structure from data where we don't necessarily know the effect of the variables.


实质:We can derive this structure by clustering the data based on relationships among the variables in the data. With unsupervised learning there is no feedback based on the prediction results.


示例

Clustering: Take a collection of 1,000,000 different genes, and find a way to automatically group these genes into groups that are somehow similar or related by different variables,such as lifespan, location, roles, and so on.
Non-clustering: The "Cocktail Party Algorithm", allows you to find structure in a chaotic environment. (i.e. identifying individual voices and music from a mesh of sounds at a cocktail party).

相关文章

  • 吴恩达机器学习——绪论

    开始学习机器学习,之前在网上找了好久的资料,发现还是吴恩达讲的机器学习更容易被理解。现在网易云课堂出了中文字幕版的...

  • 《吴恩达 - 机器学习》笔记

    学习资源 b站:机器学习(Machine Learning)- 吴恩达(Andrew Ng)网易:吴恩达《机器学习...

  • 机器学习笔记

    学习记录,从小白做起。 传统给机器学习 先来镇楼的,吴恩达机器学习:吴恩达机器学习 OCTAVE版本下载:http...

  • 吴恩达机器学习课程

    吴恩达机器学习课程

  • 机器学习相关资料整理

    初学机器学习,将部分资料整理在此,逐渐完善。 视频资源 吴恩达机器学习 介绍:吴恩达老师关于机器学习的入门级视频...

  • 吴恩达机器学习课程学习记录(1.绪论部分)

    2020.10.6老师提了建议说可以去看看吴恩达老师的机器学习课程,我就去啦,顺便做做笔记~ 完成了绪论部分:课程...

  • 吴恩达deep_learning_week2_logistic回

    吴恩达deep_learning_week2_logistic回归 标签: 机器学习深度学习 这是吴恩达深度学习里...

  • 机器学习资料汇总

    吴恩达深度学习讲义 http://www.ai-start.com/dl2017/ 吴恩达机器学习讲义 http:...

  • 引言

    这个文集是Coursera上吴恩达教授授课的《机器学习》课程的课程笔记与总结,下面是课程的链接:吴恩达教授机器学习...

  • 2018-04-27

    机器学习吴恩达第二章get

网友评论

    本文标题:吴恩达机器学习——绪论

    本文链接:https://www.haomeiwen.com/subject/ejfqhctx.html