美文网首页R语言做图plot
跟着Molecular Systems Biology学作图:R

跟着Molecular Systems Biology学作图:R

作者: 小明的数据分析笔记本 | 来源:发表于2021-12-07 17:29 被阅读0次

    论文

    A genome-scale TF-DNA interaction network of transcriptional regulation of Arabidopsis primary and specialized metabolism

    https://www.embopress.org/doi/full/10.15252/msb.202110625

    image.png

    论文中提供了figure1中4个柱形图的数据和代码,今天的推文介绍一下画柱形图的代码以及使用ggplot2作图后如何把多个图拼接到一起,拼图使用R语言的patchwork这个R包


    image.png

    做柱形图的数据和代码下载链接

    https://github.com/melletang/ccp_y1h

    首先是读取数据

    library(tidyverse)
    library(readxl)
    network <- readxl::read_excel("MSB-2021-10625-DatasetEV3-Network.xls",
                                  sheet = "CC_Y1H_network")
    

    整理数据的代码

    binding_summary <- network %>% select(Promoter_AGI, Target_Pathway) %>% unique() %>% group_by(Target_Pathway) %>% 
      tally() %>% rename(num_gene = n)
    binding_summary <- left_join(binding_summary, 
                                 network %>% select(TF_AGI, Target_Pathway) %>%
                                   unique() %>% group_by(Target_Pathway) %>% tally() %>%
                                   rename(num_tf = n))
    
    binding_summary <- left_join(binding_summary, 
                                 network %>% select(TF_AGI, Promoter_AGI, Target_Pathway) %>%
                                   unique() %>% group_by(Target_Pathway) %>% tally() %>%
                                   rename(num_int = n))
    

    这里遇到一个新的函数tally(),这个函数来自dplyr这个包,作用是统计每个元素出现的个数,比如用iris这个数据集做一个简单的演示

    iris %>% group_by(Species) %>% tally()
    
    image.png

    记下来是四个柱形图的代码

    library(ggplot2)
    
    panel_b <- ggplot(binding_summary, aes(reorder(Target_Pathway,num_gene), num_gene)) + geom_bar(stat = "identity", fill = "black") + coord_flip() + theme_bw() +
      ylab("Number of genes") + xlab("Pathway") + theme(
        axis.text = element_text(color = "black", size = "10"),
        axis.title = element_text(color = "black", size = "10")
      )
    panel_b
    
    
    panel_c <- ggplot(binding_summary, aes(reorder(Target_Pathway,num_gene), num_tf)) + geom_bar(stat = "identity", fill = "black") + coord_flip() + theme_bw() +
      ylab("Number of TFs") + xlab("Pathway") + theme(
        axis.text = element_text(color = "black", size = "10"),
        axis.title = element_text(color = "black", size = "10"),
        plot.margin = unit(c(0, 0.5, 0, 0), "cm")
      ) 
    
    panel_c
    
    panel_d <- ggplot(binding_summary, aes(reorder(Target_Pathway,num_gene), num_int)) + geom_bar(stat = "identity", fill = "black") + 
      coord_flip() + theme_bw() + ylab("Number of interactions") + xlab("Pathway") + theme(
        axis.text = element_text(color = "black", size = "10"),
        axis.title = element_text(color = "black", size = "10")) 
    
    panel_d
    num_path <- network %>% select(TF_AGI, Target_Pathway) %>% unique() %>% group_by(TF_AGI) %>% tally()
    
    numpathbar <- num_path %>% group_by(n) %>% tally()
    
    panel_e <- ggplot(numpathbar, aes(n, nn)) + geom_bar(stat = "identity", fill = "black")+ theme_bw() + ylab("Number of TFs") + xlab("Number of Pathways") + theme(
      axis.text = element_text(color = "black", size = "10"),
      axis.title = element_text(color = "black", size = "10")) + scale_x_continuous(breaks=seq(0,12,1))
    panel_e
    

    最后是拼图

    其中的A图带概率是借助PPT做的,这里我的处理方式是用ggplot2做一个空白图占据位置,拼图后将整个图导出PPT,然后再PPT里作图A

    先做个空白图

    ggplot()+
      theme_void() -> pA
    

    拼图代码

    library(patchwork)
    (pA + (panel_b/panel_c))/(panel_d+panel_e)
    
    image.png

    添加ABCDE的文字标签

    library(patchwork)
    (pA + (panel_b/panel_c))/(panel_d+panel_e)+
      plot_layout(heights =c(2,1) )+
      plot_annotation(tag_levels = "A")
    
    image.png

    导出为PPT

    library(patchwork)
    (pA + (panel_b/panel_c))/(panel_d+panel_e)+
      plot_layout(heights =c(2,1) )+
      plot_annotation(tag_levels = "A") -> x
    
    library(export)
    export::graph2ppt(x=x,file="figure1.ppt",
                      width=10,
                      height=10,
                      aspectr=3/2)
    
    image.png

    欢迎大家关注我的公众号

    小明的数据分析笔记本

    小明的数据分析笔记本 公众号 主要分享:1、R语言和python做数据分析和数据可视化的简单小例子;2、园艺植物相关转录组学、基因组学、群体遗传学文献阅读笔记;3、生物信息学入门学习资料及自己的学习笔记!

    相关文章

      网友评论

        本文标题:跟着Molecular Systems Biology学作图:R

        本文链接:https://www.haomeiwen.com/subject/emfaxrtx.html