本文要点
- 为何需要自动化检测方案
- 自动卡顿检测方案原理
- 看一下Looper.loop()源码
- 实现思路
- AndroidPerformanceMonitor实战
- 基于AndroidPerformanceMonitor源码简析
- 接下来我们讨论一下方案的不足
- 自动检测方案优化
项目GitHub
为何需要自动化检测方案
- 前面提到过的系统工具只适合线下针对性分析,无法带到线上!
- 线上及测试环节需要自动化检测方案
方案原理
- 源于Android的消息处理机制;
一个线程不管有多少Handler,只会有一个Looper存在,
主线程中所有的代码,都会通过Looper.loop()执行; -
loop()中有一个
mLogging
对象,
它在每个Message
处理前后都会被调用: -
如果主线程发生卡顿,
一定是在dispatchMessage
执行了耗时操作! Handler机制图
由此,我们便可以通过
mLogging
对象
对dispatchMessage
执行的时间进行监控;
看一下Looper.loop()源码
public static void loop() {
final Looper me = myLooper();
if (me == null) {
throw new RuntimeException("No Looper; Looper.prepare() wasn't called on this thread.");
}
final MessageQueue queue = me.mQueue;
// Make sure the identity of this thread is that of the local process,
// and keep track of what that identity token actually is.
Binder.clearCallingIdentity();
final long ident = Binder.clearCallingIdentity();
// Allow overriding a threshold with a system prop. e.g.
// adb shell 'setprop log.looper.1000.main.slow 1 && stop && start'
final int thresholdOverride =
SystemProperties.getInt("log.looper."
+ Process.myUid() + "."
+ Thread.currentThread().getName()
+ ".slow", 0);
boolean slowDeliveryDetected = false;
for (;;) {
Message msg = queue.next(); // might block
if (msg == null) {
// No message indicates that the message queue is quitting.
return;
}
// This must be in a local variable, in case a UI event sets the logger
final Printer logging = me.mLogging;
if (logging != null) {
logging.println(">>>>> Dispatching to " + msg.target + " " +
msg.callback + ": " + msg.what);
}
final long traceTag = me.mTraceTag;
long slowDispatchThresholdMs = me.mSlowDispatchThresholdMs;
long slowDeliveryThresholdMs = me.mSlowDeliveryThresholdMs;
if (thresholdOverride > 0) {
slowDispatchThresholdMs = thresholdOverride;
slowDeliveryThresholdMs = thresholdOverride;
}
final boolean logSlowDelivery = (slowDeliveryThresholdMs > 0) && (msg.when > 0);
final boolean logSlowDispatch = (slowDispatchThresholdMs > 0);
final boolean needStartTime = logSlowDelivery || logSlowDispatch;
final boolean needEndTime = logSlowDispatch;
if (traceTag != 0 && Trace.isTagEnabled(traceTag)) {
Trace.traceBegin(traceTag, msg.target.getTraceName(msg));
}
final long dispatchStart = needStartTime ? SystemClock.uptimeMillis() : 0;
final long dispatchEnd;
try {
msg.target.dispatchMessage(msg);
dispatchEnd = needEndTime ? SystemClock.uptimeMillis() : 0;
} finally {
if (traceTag != 0) {
Trace.traceEnd(traceTag);
}
}
if (logSlowDelivery) {
if (slowDeliveryDetected) {
if ((dispatchStart - msg.when) <= 10) {
Slog.w(TAG, "Drained");
slowDeliveryDetected = false;
}
} else {
if (showSlowLog(slowDeliveryThresholdMs, msg.when, dispatchStart, "delivery",
msg)) {
// Once we write a slow delivery log, suppress until the queue drains.
slowDeliveryDetected = true;
}
}
}
if (logSlowDispatch) {
showSlowLog(slowDispatchThresholdMs, dispatchStart, dispatchEnd, "dispatch", msg);
}
if (logging != null) {
logging.println("<<<<< Finished to " + msg.target + " " + msg.callback);
}
// Make sure that during the course of dispatching the
// identity of the thread wasn't corrupted.
final long newIdent = Binder.clearCallingIdentity();
if (ident != newIdent) {
Log.wtf(TAG, "Thread identity changed from 0x"
+ Long.toHexString(ident) + " to 0x"
+ Long.toHexString(newIdent) + " while dispatching to "
+ msg.target.getClass().getName() + " "
+ msg.callback + " what=" + msg.what);
}
msg.recycleUnchecked();
}
}
-
里边有一个for循环,
会不断地读取消息队列队头进行处理:
- 处理之前,会调用
logging.println()
执行之后再次调用 我们可以从打印日志的前缀来判断Message处理的开始
和结束
;
实现思路
- 通过
Looper.getMainLooper().setMessageLogging();
,
来设置我们自己的Logging;
这样每次Message处理的前后,
调用的就是我们自己的Logging; - 如果匹配到
>>>>> Dispatching
,
我们就可以执行一个代码,
即在指定的阈值时间之后,
在子线程中开始执行一个【获取当前子线程的堆栈信息以及当前的一些场景信息(如内存大小、变量、网络状态等)】的任务;
如果匹配到<<<<< Finished
,
则说明在指定的阈值时间内,Message被执行完成,没有发生卡顿,
那便将这个任务取消掉;
AndroidPerformanceMonitor实战
AndroidPerformanceMonitor原理:便是上述的实现思路和原理;
特性1:非侵入式的
性能监控组件
,
可以用通知的方式
弹出卡顿信息,同时用logcat
打印出关于卡顿的详细信息;
可以检测所有线程中执行的任何方法,又不需要手动埋点,
设置好阈值等配置,就“坐享其成”,等卡顿问题“愿者上钩”!!特性2:方便精确,可以把问题定位到代码的具体某一行!!!
【方案的
不足
以及框架源码解析
在下面实战之后总结!!】
实战开始---------------------------------------------------
-
库的依赖:
implementation 'com.github.markzhai:blockcanary-android:1.5.0'
-
在项目中引入依赖后,
在Application进行初始化,
BlockCanary.install(this, new AppBlockCanaryContext()).start();
第一个参数是上下文
,
第二个参数是需要传入一个Block的配置类实例
【BlockCanaryContext类实例或者其子类实例】:
public class TestApp extends Application {
@Override
public void onCreate() {
super.onCreate();
...
//AndroidPerformanceMonitor测试
BlockCanary.install(this, new AppBlockCanaryContext()).start();
}
}
AppBlockCanaryContext
是我们自定义的类,
配置了BlockCanary
的各种信息,
代码较多,可以看下GitHub,这里就不贴全部代码了~
下面两个配置方法分别是
给出一个uid
,可以用于在上报时上报当前的用户信息
;
第二个是自定义卡顿的阈值时间
,过了阈值便认为是卡顿,
这里指定的是500ms
;
/**
* Implement in your project.
*
* @return user id
*/
public String provideUid() {
return "uid";
}
/**
* Config block threshold (in millis), dispatch over this duration is regarded as a BLOCK. You may set it
* from performance of device.
*
* @return threshold in mills
*/
public int provideBlockThreshold() {
return 500;
}
-
接着在
MainActivity
的onCreate()
中,
让主线程沉睡两秒(2000ms > 设定的阈值500ms);
- 运行时,因为主线程停滞时间超过既定阈值,
组件会认为其卡顿并且弹出通知!!
当然Android8.0以后比较麻烦,
因为notificationManager需要配置Channel等才能用,
或者允许后台弹出界面
, 桌面上便会出现这个图标: 进去之后就可以看到了相应的信息了: 当然,我们可以在logcat中定位关键词blockInfo
,
看到同样的详细的信息: 如上,
Block框架打印出来了【当前子线程的堆栈信息
以及当前的一些场景信息
(如内存大小、变量、网络状态等)】,
从time-start
到time-end
的时间间隔
又可以知道阻塞的时间
,如上图展示出来的,正是我们设置的2秒
!!!!
也可以看到uid键
的值 便是我们刚刚设定的字符串“uid”
;
同时还直接帮我们定位到卡顿问题的出处
!!!
可见得BlockCanary已然
成功检测到卡顿
问题的各种具体信息了!!!
基于AndroidPerformanceMonitor源码简析
由于篇幅原因,笔者把以下解析内容提取出来单独作一篇博客哈~
目录
1. 监控周期的 定义
2. dump模块 / 关于.log文件
3. 采集堆栈周期的 设定
4. 框架的 配置存储类 以及 文件系统操作封装
5. 文件写入过程(生成.log文件的源码)
6. 上传文件
7. 设计模式、技巧
8. 框架中各个主要类的功能划分
接下来我们讨论一下方案的不足
- 不足1:确实检测到卡顿,但获取到的卡顿堆栈信息可能不准确;
- 不足2:和OOM一样,最后的打印堆栈只是表象,不是真正的问题;
我们还需要监控过程中的一次次log信息来确定原因;
【假设初始方案,整个监控周期
只采集一次】
如上图,
假设主线程
在时间点T1(开始阻塞)
与T2(阻塞结束)
之间的时间段中发生了卡顿,
而卡顿检测方案
是在T2时刻
,
也就是 阻塞时间完全结束 (前提是T2-T1大于阈值
,确定了是卡顿问题)的时刻,
方案才开始
获取卡顿堆栈的信息
,
而实际发生卡顿
(如发生违例耗时处理过程
)的时间点
,
可能是在这个时间段内,而非获取信息的T2点,
那有可能,
耗时操作
在时间段内
,即在T2点之前就已经执行完成
了,
T2点获取到的可能不是卡顿发生的准确时刻,
也就是说T2时刻
获取到的信息,不能够完全反映卡顿的现场
;
最后的T2点的堆栈信息只是表象,不能反映真正的问题;
我们需要缩小采集堆栈信息的周期,进行高频采集
,详细如下;
自动检测方案优化
优化思路:获取监控周期内的多个堆栈,而不仅是一个;
主要步骤:
startMonitor
开始监控(Message分发、处理前),
接着高频采集堆栈
!!!
阻塞结束,Message分发、处理后,前后时间差——阻塞时间超过阈值,即发生卡顿,便调用endMonitor
;
记录 高频采集好的堆栈信息 到文件中
;【具体源码解析见上面解析部分(另一篇博客)】
在合适的时机上报
给服务器;【相关方案以及源码解析见上面解析部分(另一篇博客)】如此一来,
便能更清楚地知道在整个卡顿周期(阻塞开始到结束;Message分发、处理前到后)之内,
究竟是哪些方法在执行,哪些方法执行比较耗时;
优化卡顿现场
不能还原的问题;新问题:面对 高频卡顿堆栈信息的上报、处理,服务端有压力;
- 突破点:一个卡顿下多个堆栈大概率有重复;
- 解决:对一个卡顿下的堆栈进行hash排重,
找出重复的堆栈;- 效果:极大地减少展示量,同时更高效地找到卡顿堆栈;
参考:
网友评论