电商用户购买行为预测-排名48-0.23

作者: AI信仰者 | 来源:发表于2023-03-06 18:57 被阅读0次

    任务:依据电子商务平平台上真实的用户行为记录,利用机器学习相关技术,建立稳健的电商用户购买行为预测模型,预测用户下一个可能会购买的商品。

    数据简介
    数据整理自一家中等化妆品在线商店公布的网上公开数据集,为该化妆品商店真实的用户交易信息,数据集中每一行表示一个事件,所有的事件都与商品和用户相关,并且用户的点击行为之间是有时间顺序的。数据集中包含了商品和用户的多个属性,例如商品编号、商品类别、用户编号、事件时间等。

    数据说明

    image.png

    主要思路

    1. 对用户id进行分组
    2. 统计类别、品牌、收藏、加购物车、下单等特征,赋予合理的权重
    3. 构建时间特征
    4. 使用lgb的多分类模型进行训练

    lgb算法模型预测:

    注意:此版本代码lgb版本是2.0.3

    import gc
    
    import pandas as pd
    from sklearn.preprocessing import LabelEncoder
    
    paths = r'E:\项目文件\CCF\电商用户购买行为预测'
    data = pd.read_csv(f'{paths}/train.csv')
    submit_example = pd.read_csv(f'{paths}/submit_example.csv')
    test = pd.read_csv(f'{paths}/test.csv')
    
    data['user_id'] = data['user_id'].astype('int32')
    data['product_id'] = data['product_id'].astype('int32')
    data['category_id'] = data['category_id'].astype('int32')
    lbe = LabelEncoder()
    data['brand'].fillna('0', inplace=True)
    data['brand'] = lbe.fit_transform(data['brand'])
    data['brand'] = data['brand'].astype('int32')
    # data['event_time'] = pd.to_datetime(data['event_time'], format='%Y-%m-%d %H:%M:%S')
    data.fillna(0, inplace=True)
    gc.collect()
    
    train_X = data
    test_data = test
    
    # 构建特征
    groups = train_X.groupby('user_id')
    temp = groups.size().reset_index().rename(columns={0: 'u1'})
    matrix = temp
    temp = groups['product_id'].agg([('u2', 'nunique')]).reset_index()
    matrix = matrix.merge(temp, on='user_id', how='left')
    temp = groups['category_id'].agg([('u3', 'nunique')]).reset_index()
    matrix = matrix.merge(temp, on='user_id', how='left')
    temp = groups['brand'].agg([('u5', 'nunique')]).reset_index()
    # TODO 根据用户购买行为去构建特征
    # temp = groups['event_type'].value_counts().unstack().reset_index().rename(
    #     columns={0: 'u7', 1: 'u8', 2: 'u9', 3: 'u10'})
    matrix = matrix.merge(temp, on='user_id', how='left')
    
    label_list = []
    for name, group in groups:
        product_id = int(group.iloc[-1, 2])
        label_list.append([name, product_id])
    
    train_data = matrix.merge(pd.DataFrame(label_list, columns=['user_id', 'label'], dtype=int), on='user_id', how='left')
    
    # 构建特征
    groups = test_data.groupby('user_id')
    temp = groups.size().reset_index().rename(columns={0: 'u1'})
    test_matrix = temp
    temp = groups['product_id'].agg([('u2', 'nunique')]).reset_index()
    matrix = test_matrix.merge(temp, on='user_id', how='left')
    temp = groups['category_id'].agg([('u3', 'nunique')]).reset_index()
    matrix = matrix.merge(temp, on='user_id', how='left')
    temp = groups['brand'].agg([('u5', 'nunique')]).reset_index()
    # TODO 根据用户购买行为去构建特征
    # temp = groups['event_type'].value_counts().unstack().reset_index().rename(
    #     columns={0: 'u7', 1: 'u8', 2: 'u9', 3: 'u10'})
    test_data = matrix.merge(temp, on='user_id', how='left')
    
    test_data = test_data.drop(['user_id'], axis=1)
    
    train_X, train_y = train_data.drop(['label', 'user_id'], axis=1), train_data['label']
    # train_X.to_csv('train_deal.csv', index=False)
    # train_y.to_csv('train_y_deal.csv', index=False)
    # test_data.to_csv('test_data.csv', index=False)
    
    # 导入分析库
    import lightgbm as lgb
    
    model = lgb.LGBMClassifier(
        max_depth=5,
        n_estimators=10,
    )
    
    model.fit(
        train_X,
        train_y,
        eval_metric='auc',
        eval_set=[(train_X, train_y)],
        verbose=False,
        early_stopping_rounds=5
    )
    
    prob = model.predict(test_data)
    
    import numpy as np
    
    np.savetxt(paths + '\\prob1.csv', prob)
    submit_example['product_id'] = pd.Series(prob[:, 0])
    submit_example.to_csv(paths + r'\\lgb1.csv', index=False)
    
    

    xgb算法模型预测:

    import gc
    
    import pandas as pd
    import xgboost as xgb
    from sklearn.preprocessing import LabelEncoder
    
    paths = r'E:\项目文件\CCF\电商用户购买行为预测'
    data = pd.read_csv(f'{paths}/train.csv')
    submit_example = pd.read_csv(f'{paths}/submit_example.csv')
    test = pd.read_csv(f'{paths}/test.csv')
    
    data['user_id'] = data['user_id'].astype('int32')
    data['product_id'] = data['product_id'].astype('int32')
    data['category_id'] = data['category_id'].astype('int32')
    lbe = LabelEncoder()
    data['brand'].fillna('0', inplace=True)
    data['brand'] = lbe.fit_transform(data['brand'])
    data['brand'] = data['brand'].astype('int32')
    # data['event_time'] = pd.to_datetime(data['event_time'], format='%Y-%m-%d %H:%M:%S')
    data.fillna(0, inplace=True)
    gc.collect()
    
    train_X = data
    test_data = test
    
    # 构建特征
    groups = train_X.groupby('user_id')
    temp = groups.size().reset_index().rename(columns={0: 'counts'})
    matrix = temp
    temp = groups['product_id'].agg([('product_count', 'nunique')]).reset_index()
    matrix = matrix.merge(temp, on='user_id', how='left')
    temp = groups['category_id'].agg([('category_count', 'nunique')]).reset_index()
    matrix = matrix.merge(temp, on='user_id', how='left')
    temp = groups['brand'].agg([('brand_count', 'nunique')]).reset_index()
    matrix = matrix.merge(temp, on='user_id', how='left')
    
    # # 计算用户与商品交互的次数,并添加新的一列count
    # temp = groups['event_time'].transform('count')
    # matrix = matrix.merge(temp, on='user_id', how='left')
    
    # TODO 根据用户购买行为去构建特征
    # temp = groups['event_type'].value_counts().unstack().reset_index().rename(
    #     columns={0: 'u7', 1: 'u8', 2: 'u9', 3: 'u10'})
    
    
    label_list = []
    for name, group in groups:
        product_id = int(group.iloc[-1, 2])
        label_list.append([name, product_id])
    
    train_data = matrix.merge(pd.DataFrame(label_list, columns=['user_id', 'label'], dtype=int), on='user_id', how='left')
    
    # 构建特征
    groups = test_data.groupby('user_id')
    temp = groups.size().reset_index().rename(columns={0: 'counts'})
    matrix = temp
    temp = groups['product_id'].agg([('product_count', 'nunique')]).reset_index()
    matrix = matrix.merge(temp, on='user_id', how='left')
    temp = groups['category_id'].agg([('category_count', 'nunique')]).reset_index()
    matrix = matrix.merge(temp, on='user_id', how='left')
    temp = groups['brand'].agg([('brand_count', 'nunique')]).reset_index()
    matrix = matrix.merge(temp, on='user_id', how='left')
    # 计算用户与商品交互的次数,并添加新的一列count
    # temp = groups['event_time'].transform('count')
    # matrix = matrix.merge(temp, on='user_id', how='left')
    test_data = matrix.merge(temp, on='user_id', how='left')
    
    # TODO 根据用户购买行为去构建特征
    # temp = groups['event_type'].value_counts().unstack().reset_index().rename(
    #     columns={0: 'u7', 1: 'u8', 2: 'u9', 3: 'u10'})
    
    test_data = test_data.drop(['user_id'], axis=1)
    
    x_train, y_train = train_data.drop(['label', 'user_id'], axis=1), train_data['label']
    # X_train.to_csv('train_deal.csv', index=False)
    # Y_train.to_csv('train_y_deal.csv', index=False)
    # test_data.to_csv('test_data.csv', index=False)
    
    # x_train, x_valid, y_train, y_valid = train_test_split(X_train, Y_train, test_size=.2)
    
    model = xgb.XGBClassifier(
        max_depth=8,
        n_estimators=1000,
        min_child_weight=300,
        colsample_bytree=0.8,
        subsample=0.8,
        eta=0.3,
        seed=42
    )
    
    model.fit(
        x_train,
        y_train,
        eval_metric='auc',
        # eval_set=[(x_train, y_train), (x_valid, y_valid)],
        verbose=True,
    )
    
    predict_test = model.predict(test_data)
    print(predict_test)
    import numpy as np
    
    np.savetxt(paths + '\\pred.csv', predict_test)
    submit_example['product_id'] = pd.Series(predict_test[:, 0])
    submit_example.to_csv(paths + r'\\xgb_best.csv', index=False)
    
    

    耍花招凑提交的方法,直接默认买最后一条记录,小心被封号

    import pandas as pd
    
    paths = r'E:\项目文件\CCF\电商用户购买行为预测'
    submit_example = pd.read_csv(f'{paths}/submit_example.csv')
    test = pd.read_csv(f'{paths}/test.csv')
    
    # 构建特征
    groups = test.groupby('user_id')
    label_list = []
    for name, group in groups:
        product_id = int(group.iloc[-1, 2])
        label_list.append([name, product_id])
    
    submit_example = pd.DataFrame(label_list, columns=['user_id', 'product_id'])
    submit_example.to_csv(paths + r'\\label_list.csv', index=False)
    
    

    参考文献,思路都差不多,主要看你怎么构造特征了,加油吧少年

    天池新人实战赛之[离线赛]_baseline_lgb

    天池新人赛-Repeat Buyers Prediction-Challenge the Baseline-排名167

    相关文章

      网友评论

        本文标题:电商用户购买行为预测-排名48-0.23

        本文链接:https://www.haomeiwen.com/subject/gagmldtx.html