Tensorflow(1)

作者: Thinkando | 来源:发表于2018-04-02 21:27 被阅读65次

    目录

    1. 初识
    2. fetch and feed
    3. 非线性模型
    1. 初识
    • 矩阵相乘
    import tensorflow as tf
    
    # 创建一个一行两列的矩阵
    m1 = tf.constant([[3,3]])
    # 创建一个两行一列的矩阵
    m2 = tf.constant([[2],[3]])
    # 两个矩阵相成
    product = tf.matmul(m1,m2)
    # 调用sess 的run方法来执行矩阵乘法
    with tf.Session() as sess:
        result = sess.run(product)
        print(result)
    
    [[15]]
    
    • 矩阵加减
    import tensorflow as tf
    # 创建一个变量
    x = tf.Variable([1,2])
    # 创建一个常量
    a = tf.constant([3,3])
    # 相减、相加
    sub = tf.subtract(x,a)
    add = tf.add(x,sub)
    
    # 初始化变量
    init = tf.global_variables_initializer()
    
    with tf.Session() as sess:
        sess.run(init)
        print(sess.run(add))
        print(sess.run(sub))
    
    [-1  1]
    [-2 -1]
    
    • 矩阵累加
    # 创建一个变量初始化为0
    state = tf.Variable(0,name='counter')
    new_value = tf.add(state, 1)
    # 赋值op
    update = tf.assign(state, new_value)
    
    init = tf.global_variables_initializer()
    with tf.Session() as sess:
        sess.run(init)
        print(sess.run(state))
        for i in range(5):
            sess.run(update)
            print(sess.run(state))
    
    0
    1
    2
    3
    4
    5
    
    2. fetch and feed
    • fetch: 运行多个op
    import tensorflow as tf
    input1= tf.constant(3.0)
    input2= tf.constant(2.0)
    input3= tf.constant(5.0)
    
    add = tf.add(input2,input3)
    mul = tf.multiply(input1,add)
    
    with tf.Session() as sess:
        result = sess.run([mul,add])
        print(result)
    
    [21.0, 7.0]
    
    • feed
    input1= tf.placeholder(tf.float32)
    input2= tf.placeholder(tf.float32)
    output= tf.multiply(input1,input2)
    
    with tf.Session() as sess:
        print(sess.run(output,feed_dict={input1:[8.],input2:[2.]}))
    
    [ 16.]
    
    import tensorflow as tf
    import numpy as np
    
    # 使用numpy生成100个随机点
    x_data = np.random.rand(100)
    y_data = x_data*0.1 + 0.2
    
    # 构造一个非线性模型
    b = tf.Variable(0.)
    k = tf.Variable(0.)
    y = k*x_data + b
    
    # 二次代价函数
    # reduce_mean , 取矩阵的平均数,起到降维的作用
    loss = tf.reduce_mean(tf.square(y_data-y))
    
    #定义一个梯度下降法来进行训练的优化器
    #0.1 表示学习率,表示收敛的快慢
    optimizer= tf.train.GradientDescentOptimizer(0.1)
    #最小化代价函数
    train = optimizer.minimize(loss)
    #初始化变量
    init = tf.global_variables_initializer()
    
    with tf.Session() as sess:
        sess.run(init)
        for step in range(201):
            sess.run(train)
            if step%50 ==0:
                print(step,sess.run([k,b]))
    
    0 [0.053788777, 0.10022569]
    50 [0.10169169, 0.19908892]
    100 [0.10049076, 0.19973569]
    150 [0.10014237, 0.19992332]
    200 [0.10004131, 0.19997776]
    
    3 非线性模型
    
    # coding: utf-8
    
    
    import tensorflow as tf
    import numpy as np
    import matplotlib.pyplot as plt
    
    
    #使用numpy生成200个随机点
    # np.newaxis,加入新维度,每一个点作为一行
    x_data = np.linspace(-0.5,0.5,200)[:,np.newaxis]
    noise = np.random.normal(0,0.02,x_data.shape)
    y_data = np.square(x_data) + noise
    
    #定义两个placeholder
    x = tf.placeholder(tf.float32,[None,1])
    y = tf.placeholder(tf.float32,[None,1])
    
    #定义神经网络中间层
    #1 代表输入值,10 代表10个神经元
    Weights_L1 = tf.Variable(tf.random_normal([1,10]))
    biases_L1 = tf.Variable(tf.zeros([1,10]))
    # 信号总和
    Wx_plus_b_L1 = tf.matmul(x,Weights_L1) + biases_L1
    # tanh双曲正切函数:将实数映射到[-1,1] 
    L1 = tf.nn.tanh(Wx_plus_b_L1)
    
    #定义神经网络输出层
    #10 代表10个神经元,1 代表1个输出层
    Weights_L2 = tf.Variable(tf.random_normal([10,1]))
    biases_L2 = tf.Variable(tf.zeros([1,1]))
    Wx_plus_b_L2 = tf.matmul(L1,Weights_L2) + biases_L2
    prediction = tf.nn.tanh(Wx_plus_b_L2)
    
    #二次代价函数
    loss = tf.reduce_mean(tf.square(y-prediction))
    #使用梯度下降法训练
    train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss)
    
    with tf.Session() as sess:
        #变量初始化
        sess.run(tf.global_variables_initializer())
        for _ in range(2000):
            sess.run(train_step,feed_dict={x:x_data,y:y_data})
            
        #获得预测值
        prediction_value = sess.run(prediction,feed_dict={x:x_data})
        #画图
        plt.figure()
        plt.scatter(x_data,y_data)
        # 'r-' 红色实线,lw 线宽为5
        plt.plot(x_data,prediction_value,'r-',lw=5)
        plt.show()
    
    image.png

    相关文章

      网友评论

        本文标题:Tensorflow(1)

        本文链接:https://www.haomeiwen.com/subject/gjjacftx.html