WEEK 6

作者: zhchhhemmm | 来源:发表于2020-08-16 13:34 被阅读0次
leetcode
64
class Solution(object):
    def minPathSum(self, grid):
        dp = [[0 for i in range(len(grid[0]))] for j in range(len(grid))]
        # print(dp)
        dp[0][0] = grid[0][0]

        for i in range(1,len(grid)):
            dp[i][0] = grid[i][0] + dp[i-1][0]

        for j in range(1,len(grid[0])):
            dp[0][j] = dp[0][j-1] + grid[0][j]

        for i in range(len(grid)):
            for j in range(len(grid[0])):
                if i != 0 and j != 0:
                    dp[i][j] = min(dp[i-1][j],dp[i][j-1]) + grid[i][j]
        return dp[-1][-1]

动态规划的思想。
因为每次只能向下或者向右移动一步,所以(m,n)的最优解就是:
min ((m,n-1)的最优解,(m-1,n)的最优解)+ 当前(m,n)的值
根据此状态转移方程写出dp算法即可。


image.png
image.png
class Solution(object):
    def processQueries(self, queries, m):
        P = []
        for i in range(1,m+1):
            P.append(i)

        # print(P)
        def changeP(P,num):
            p = [num]
            index = -1
            for i in range(len(P)):
                if P[i] != num:
                    p.append(P[i])
                else:
                    index = i

            return p,index
        indexs = []
        for item in queries:
            P,index = changeP(P,item)
            indexs.append(index)
        return indexs

设计一个函数changeP来模拟每一次对list P的操作,返回的是操作后的P和取到的index值。没有在元数组P上直接操作,而是构建了一个p


image.png
image.png
class Solution(object):
    def printVertically(self, s):
        """
        :type s: str
        :rtype: List[str]
        """
        if s == '':
            return []
        if len(s) == 1:
            return [s]
        strList = []
        now = ''
        for i in range(len(s)):
            if s[i] != ' ':
                now += s[i]
            if s[i] == ' ':
                strList.append(now)
                now = ''
            if i == len(s) - 1:
                # now += s[i]
                strList.append(now)
        print(strList)
        out = []
        maxlen = 0
        for item in strList:
            if len(item) >= maxlen:
                maxlen = len(item)
        
        for i in range(maxlen):
            inow = ''
            for item in strList:
                if (len(item)-1) >= i:
                    inow += item[i]
                else:
                    inow += ' '
            inow = inow.rstrip()
            out.append(inow)
        return out

先利用一个for loop来把str转化成list
再找出最长的单词
以这个最长单词的长度进行遍历,纵向拼接新字符串
利用rstrip()把右侧空格清除

image.png
image.png
class Solution(object):
    def numTeams(self, rating):
        if len(rating) < 3:
            return 0
        allN = 0
        for i in range(1,len(rating)-1):
            bigL = 0
            bigR = 0
            smaL = 0
            smaR = 0
            for j in range(i):
                if rating[j] < rating[i]:
                    smaL += 1
                else:
                    bigL += 1
            for k in range(i+1,len(rating)):
                if rating[k] < rating[i]:
                    smaR += 1
                else:
                    bigR += 1
            allN += (bigR * smaL + bigL*smaR)
        return allN

思路:遍历从第二个数至倒数第二个数,假设当前被遍历到的这个数为作战单位的中间士兵,统计他左边有多少比他小的,有多少比他大的,右边也类似。要组成作战单位,需要左小右大或者左大右小,把这两种的乘积做和即可。


image.png
image.png
class Solution(object):
    def countSquares(self, matrix):
        mat = matrix
        used = []
        flag = 0
        for i in range(len(mat)):
            for j in range(len(mat[0])):
                if mat[i][j] == 1:
                    used.append([i,j])
                    flag += 1

        for nums in range(2,min(len(mat),len(mat[0])) + 1 ):
            linshi = []
            for item in used:
                flag_now = 0
                if (item[0]+nums -1) <=(len(mat)-1) and (item[1]+nums-1) <=(len(mat[0])-1):
                    for i in range(nums):
                        if mat[item[0] + i][item[1] + nums-1]  == 0:
                            flag_now = 1


                    for i in range(nums):
                        if mat[item[0] + nums -1][item[1]+i] == 0:
                            flag_now = 1
                    if flag_now == 0:
                        linshi.append(item)
                        flag += 1
            used = linshi

        return flag

如果用暴力解法的话,本题写出来有五重循环,提交将会超时。
于是考虑到以步长为最外层的循环,且用一个used数组,来记录上一个步长中满足条件的矩形的左上角坐标。
依据:如果一个point向右下延伸,无法构造n*n有效矩阵,那么显然也不可能构造出n+1 * n+1的有效矩阵来,这个操作大大减少了运算。且此时不必验证该n+1 * n+1矩阵中每个点是否为1,只需验证其最外层,一定程度上减少了计算。


image.png
image.png
class Solution(object):
    def findLucky(self, arr):
        mydict = {}
        luky = []
        for i in arr:
            if mydict.get(i,'no') == 'no':
                mydict[i] = 1
            else:
                mydict[i] += 1
        for item in mydict.items():
            if item[0] == item[1]:
                luky.append(item[0])
        if len(luky) == 0:
            return -1
        return max(luky)

利用一个dict来记录各个数字的出现次数,最后遍历即可


image.png
image.png
class Solution(object):
    def findTheDistanceValue(self, arr1, arr2, d):
        nums = 0
        def abs(num):
            return max(num,-num)
        for i in arr1:
            flag = 0
            for j in arr2:
                if abs(i-j) <= d:
                    flag = 1
                    break
            if flag == 0:
                nums += 1
            flag  = 0
        return nums
image.png

相关文章

网友评论

      本文标题:WEEK 6

      本文链接:https://www.haomeiwen.com/subject/hvxjdktx.html