1. 创建conf和table
var tableName = "httpsystem_dev"
val conf= HBaseConfiguration.create()
//设置要查询的表
conf.set(TableInputFormat.INPUT_TABLE,tableName)
val table = new HTable(conf,tableName)
2. 通过SparkAPI读取数据
val hbaseRDD = sc.newAPIHadoopRDD(hbaseConfiguration, classOf[TableInputFormat],
classOf[org.apache.hadoop.hbase.io.ImmutableBytesWritable],
classOf[org.apache.hadoop.hbase.client.Result])
返回的数据是一个ImmutableBytesWritable,和一个result组成的二元组,result就是一个列表
3. 通过扫描设置相查询数据
var scan = new Scan()
scan.addFamily(Bytes.toBytes("0"))
scan.addColumn(Bytes.toBytes("0"), Bytes.toBytes("ML_rule_juge_id"))
scan.addColumn(Bytes.toBytes("0"), Bytes.toBytes("ML_juge_mal"))
scan.addColumn(Bytes.toBytes("0"), Bytes.toBytes("ML_juge_type"))
scan.addColumn(Bytes.toBytes("0"), Bytes.toBytes("DLCNN_juge_mal"))
scan.addColumn(Bytes.toBytes("0"), Bytes.toBytes("DLCNN_juge_type"))
//spark读取hbase转换rdd
var proto = ProtobufUtil.toScan(scan)
var scanToString = Base64.encodeBytes(proto.toByteArray)
hbaseConfiguration.set(TableInputFormat.SCAN, scanToString)
4. 将RDD转换为Df
//rdd返回df
var rdd = hbaseRDD.map(new org.apache.spark.api.java.function.Function[(ImmutableBytesWritable, Result), Row] {
override def call(v1: (ImmutableBytesWritable, Result)): Row = {
var result: Result = v1._2
var rowkey: String = Bytes.toString(result.getRow)
var ML_juge_type: String = Bytes.toString(result.getValue(Bytes.toBytes("0"), Bytes.toBytes("ML_juge_type")))
var ML_rule_juge_id: String = Bytes.toString(result.getValue(Bytes.toBytes("0"), Bytes.toBytes("ML_rule_juge_id")))
var ML_juge_mal: String = Bytes.toString(result.getValue(Bytes.toBytes("0"), Bytes.toBytes("ML_juge_mal")))
var DLCNN_juge_type: String = Bytes.toString(result.getValue(Bytes.toBytes("0"), Bytes.toBytes("DLCNN_juge_type")))
var DLCNN_juge_mal: String = Bytes.toString(result.getValue(Bytes.toBytes("0"), Bytes.toBytes("DLCNN_juge_mal")))
RowFactory.create(rowkey, ML_rule_juge_id, ML_juge_mal, ML_juge_type, DLCNN_juge_mal, DLCNN_juge_type)
}
})
//创建df
var df = sparkSession.createDataFrame(rdd, HttpParingSchema.struct)
5.数据的写入
val put = new Put(Bytes.toBytes("rowKey"))
put.add("cf","q","value")
批量写入
val rdd = sc.textFile("/data/produce/2015/2015-03-01.log") v
al data = rdd.map(_.split("\t")).map{x=>(x(0)+x(1),x(2))}
val result = data.foreachPartition{x => {
val conf= HBaseConfiguration.create();
conf.set(TableInputFormat.INPUT_TABLE,"data");
conf.set("hbase.zookeeper.quorum","slave5,slave6,slave7");
conf.set("hbase.zookeeper.property.clientPort","2181");
conf.addResource("/home/hadoop/data/lib/hbase-site.xml");
val table = new HTable(conf,"data");
table.setAutoFlush(false,false);
table.setWriteBufferSize(3*1024*1024);
x.foreach{y => { var put= new Put(Bytes.toBytes(y._1));
put.add(Bytes.toBytes("v"),Bytes.toBytes("value"),Bytes.toBytes(y._2));table.put(put)
};
table.flushCommits}}}
6.使用Bulkload插入数据
val conf = HBaseConfiguration.create();
val tableName = "data1" val table = new HTable(conf,tableName)
conf.set(TableOutputFormat.OUTPUT_TABLE,tableName)
lazy val job = Job.getInstance(conf)
job.setMapOutputKeyClass(classOf[ImmutableBytesWritable])
job.setMapOutputValueClass(classOf[KeyValue])
HFileOutputFormat.configureIncrementalLoad(job,table)
val rdd = sc.textFile("/data/produce/2015/2015-03-01.log").map(_.split("@")).map{x => (DigestUtils.md5Hex(x(0)+x(1)).substring(0,3)+x(0)+x(1),x(2))}.sortBy(x =>x._1).map{x=>{val kv:KeyValue = new KeyValue(Bytes.toBytes(x._1),Bytes.toBytes("v"),Bytes.toBytes("value"),Bytes.toBytes(x._2+""));
(new ImmutableBytesWritable(kv.getKey),kv)}}
rdd.saveAsNewAPIHadoopFile("/tmp/data1",classOf[ImmutableBytesWritable],classOf[KeyValue],classOf[HFileOutputFormat],job.getConfiguration())
val bulkLoader = new LoadIncrementalHFiles(conf)
bulkLoader.doBulkLoad(new Path("/tmp/data1"),table)
网友评论