metric
,
default=
{l2
for regression},
{binary_logloss
for binary classification},
{ndcg
for lambdarank},
type=multi-enum,
options=l1
, l2
, ndcg
, auc
, binary_logloss
, binary_error
…
-
l1
, absolute loss, alias=mean_absolute_error
,mae
-
l2
, square loss, alias=mean_squared_error
,mse
-
l2_root
, root square loss, alias=root_mean_squared_error
,rmse
-
quantile
, Quantile regression -
huber
, Huber loss -
fair
, Fair loss -
poisson
, Poisson regression -
ndcg
, NDCG -
map
, MAP -
auc
, AUC -
binary_logloss
, log loss -
binary_error
, 样本:0
的正确分类,1
错误分类 -
multi_logloss
, mulit-class 损失日志分类 -
multi_error
, error rate for mulit-class 出错率分类 -
xentropy
, cross-entropy (与可选的线性权重), alias=cross_entropy
-
xentlambda
, “intensity-weighted” 交叉熵, alias=cross_entropy_lambda
-
kldiv
, Kullback-Leibler divergence, alias=kullback_leibler
- 支持多指标, 使用
,
分隔
网友评论