Android 绘制原理浅析「干货」

作者: Android高级开发 | 来源:发表于2019-08-09 14:58 被阅读3次

    背景

    对于Android开发,在面试的时候,经常会被问到,说一说View的绘制流程?我也经常问面试者,View的绘制流程.

    对于3年以上的开发人员来说,就知道onMeasure/onLayout/onDraw基本,知道他们呢是干些什么的,这样就够了吗?

    如果你来我们公司,我是你的面试官,可能我会考察你这三年都干了什么,对于View你都知道些什么,会问一些更细节的问题,比如LinearLayout的onMeasure,onLayout过程?他们都是什么时候被发起的,执行顺序是什么?

    如果以上问题你都知道,可能你进来我们公司就差不多了(如果需要内推,可以联系我,Android/IOS 岗位都需要),可能我会考察你draw的 canvas是哪里来的,他是怎么被创建显示到屏幕上呢?看看你的深度有多少?

    对于现在的移动开发市场逐渐趋向成熟,趋向饱和,很多不缺人的公司,都需要高级程序员.在说大家也都知道,面试要造飞机大炮,进去后拧螺丝,对于一个3年或者5年以上Android开发不稍微了解一些Android深一点的东西,不是很好混.扯了这么多没用的东西,还是回到今天正题,Android的绘图原理浅析.

    本文介绍思路

    从面试题中几个比较容易问的问题,逐层深入,直至屏幕的绘图原理.

    在讲Android的绘图原理前,先介绍一下Android中View的基本工作原理,本文暂不介绍事件的传递流程。

    View 绘制工作原理

    我们先理解几个重要的类,也是在面试中经常问到的

    Activity,Window(PhoneWindow),DecorView之间的关系

    理解他们三者的关系,我们直接看代码吧,先从Activity开始的setContentView开始(注:代码删除了一些不是本次分析流程的代码,以免篇幅过长)

    //Activity
     /**
     * Set the activity content from a layout resource. The resource will be
     * inflated, adding all top-level views to the activity.
     *
     * @param layoutResID Resource ID to be inflated.
     *
     * @see #setContentView(android.view.View)
     * @see #setContentView(android.view.View, android.view.ViewGroup.LayoutParams)
     */
     public void setContentView(@LayoutRes int layoutResID) {
     getWindow().setContentView(layoutResID);
     initWindowDecorActionBar();
     }
     
     public Window getWindow() {
     return mWindow;
     }
    

    里面调用的getWindow的setContentView,这个接下来讲,那么这个mWindow是何时被创建的呢?

    //Activity
    private Window mWindow;
    final void attach(Context context, ActivityThread aThread,····) {
     attachBaseContext(context);
     mFragments.attachHost(null /*parent*/);
     mWindow = new PhoneWindow(this, window, activityConfigCallback);
    }
    

    在Activity的attach中创建了PhoneWindow,PhoneWindow是Window的实现类.

    继续刚才的setContentView

    //PhoneWindow
     @Override
     public void setContentView(int layoutResID) {
     if (mContentParent == null) {
     installDecor();
     } else if (!hasFeature(FEATURE_CONTENT_TRANSITIONS)) {
     mContentParent.removeAllViews();
     }
     if (hasFeature(FEATURE_CONTENT_TRANSITIONS)) {
     final Scene newScene = Scene.getSceneForLayout(mContentParent, layoutResID,
     getContext());
     transitionTo(newScene);
     } else {
     mLayoutInflater.inflate(layoutResID, mContentParent);
     }
     }
    

    在setContentView中,如果mContentParent为空,会去调用installDecor,最后将布局infalte到mContentParent.在来看一下installDecor

    //PhoneWindow
     // This is the view in which the window contents are placed. It is either
     // mDecor itself, or a child of mDecor where the contents go.
     ViewGroup mContentParent;
     
     private DecorView mDecor;
     
     private void installDecor() {
     mForceDecorInstall = false;
     if (mDecor == null) {
     mDecor = generateDecor(-1);
     } else {
     mDecor.setWindow(this);
     }
     if (mContentParent == null) {
     mContentParent = generateLayout(mDecor);
     }
     }
     protected DecorView generateDecor(int featureId) {
     return new DecorView(context, featureId, this, getAttributes());
     }
    

    在installDecor,创建了一个DecorView.看mContentParent的注释我们可以知道,他本身就是mDecor或者是mDecor的contents部分.

    综上,我们大概知道了三者的关系,

    • Activity包含了一个PhoneWindow,
    • PhoneWindow就是继承于Window
    • Activity通过setContentView将View设置到了PhoneWindow上
    • PhoneWindow里面包含了DecorView,最终布局被添加到Decorview上.

    理解ViewRootImpl,WindowManager,WindowManagerService(WMS)之间的关系

    看了上述三者的关系后,我们知道布局最终被添加到了DecorView上.那么DecorView是怎么被添加到系统的Framework层.

    当Activity准备好后,最终会调用到Activity中的makeVisible,并通过WindowManager添加View,代码如下

    //Activity 
     void makeVisible() {
     if (!mWindowAdded) {
     ViewManager wm = getWindowManager();
     wm.addView(mDecor, getWindow().getAttributes());
     mWindowAdded = true;
     }
     mDecor.setVisibility(View.VISIBLE);
     }
    

    那他们到底是什么关系呢? (下面提到到客户端服务端是Binder通讯中的客户端服务端概念. )

    以下内容是重点需要理解的部分

    • ViewRootImpl(客户端):View中持有与WMS链接的mAttachInfo,mAttachInfo持有ViewRootImpl.ViewRootImpl是ViewRoot的的实现,WMS管理窗口时,需要通知客户端进行某种操作,比如事件响应等.ViewRootImpl有个内部类W,W继承IWindow.Stub,实则就是一个Binder,他用于和WMS IPC交互。ViewRootHandler也是其内部类继承Handler,用于与远程IPC回来的数据进行异步调用.
    • WindowManger(客户端):客户端需要创建一个窗口,而具体创建窗口的任务是由WMS完成,WindowManger就像一个部门经理,谁有什么需求就告诉它,它和WMS交互,客户端不能直接和WMS交互.
    • WindowManagerService(WMS)(服务端):负责窗口的创建,显示等.

    View的重绘

    从上述关系中,ViewRootImpl是用于接收WMS传递来的消息.那么我们来看一下ViewRootImpl里面的几个关于View绘制的代码.

    在这里在强调一下,ViewRootImpl 两个重要的内部类

    • W类 继承Binder 用于接收WMS 传递来的消息
    • ViewRootHandler类继承Handler 接收W类的异步消息

    下面看一下ViewRootHandler类.(以View的setVisible为例.)

    // ViewRootHandler(ViewRootImpl的内部类,用于异步消息处理,和Acitivity的启动很像)
    //第一步 Handler接收W(Binder)传递来的消息
    @Override
    public void handleMessage(Message msg) {
     switch (msg.what) {
     case MSG_INVALIDATE:
     ((View) msg.obj).invalidate();
     break;
     case MSG_INVALIDATE_RECT:
     final View.AttachInfo.InvalidateInfo info = (View.AttachInfo.InvalidateInfo) msg.obj;
     info.target.invalidate(info.left, info.top, info.right, info.bottom);
     info.recycle();
     break;
     case MSG_DISPATCH_APP_VISIBILITY://处理Visible
     handleAppVisibility(msg.arg1 != 0);
     break;
     } 
    }
     
    void handleAppVisibility(boolean visible) {
     if (mAppVisible != visible) {
     mAppVisible = visible;
     scheduleTraversals();
     if (!mAppVisible) {
     WindowManagerGlobal.trimForeground();
     }
     }
    }
     
     void scheduleTraversals() {
     if (!mTraversalScheduled) {
     mTraversalScheduled = true;
     mTraversalBarrier = mHandler.getLooper().getQueue().postSyncBarrier();
     //开启下次刷新,就遍历View树
     mChoreographer.postCallback(
     Choreographer.CALLBACK_TRAVERSAL, mTraversalRunnable, null);
     if (!mUnbufferedInputDispatch) {
     scheduleConsumeBatchedInput();
     }
     notifyRendererOfFramePending();
     pokeDrawLockIfNeeded();
     }
    }
    

    看一下mTraversalRunnable

     final class TraversalRunnable implements Runnable {
     @Override
     public void run() {
     doTraversal();
     }
     }
    final TraversalRunnable mTraversalRunnable = new TraversalRunnable();
     
     void doTraversal() {
     if (mTraversalScheduled) {
     mTraversalScheduled = false;
     mHandler.getLooper().getQueue().removeSyncBarrier(mTraversalBarrier);
     performTraversals();
     }
     } 
    

    在TraversalRunnable中,执行doTraversal.并在doTraversal执行performTraversals(),是不是看到了我们熟悉的performTraversals()了?是的,在这里才开始View的绘制工作.

    在ViewRootImpl中的performTraversals(),这个方法代码很长(大约800行代码),大致流程是

    1. 判断是否需要重新计算视图大小,如果需要就执行performMeasure()
    2. 是否需要重新安置所在的位置,performLayout()
    3. 是否需要重新绘制performDraw()

    那么是什么导致View的重绘呢?这里总结了3个主要原因

    • 视图本身内部状态(enable,pressed等)变化,可能引起重绘
    • View内部添加或者删除了View
    • View本身的大小和可见性发生了变化

    View的绘制流程

    在上一小节了,讲述了performTraversals()的是被WMS IPC调用执行的.View的绘制流程一般是

    从performTraversals -> performMeasure() -> performLayout() -> performDraw().

    下面看一下performMeasure()

    //ViewRootImpl
    private void performMeasure(int childWidthMeasureSpec, int childHeightMeasureSpec) {
     if (mView == null) {
     return;
     }
     Trace.traceBegin(Trace.TRACE_TAG_VIEW, "measure");
     try {
     mView.measure(childWidthMeasureSpec, childHeightMeasureSpec);
     } finally {
     Trace.traceEnd(Trace.TRACE_TAG_VIEW);
     }
     }
     
     public final void measure(int widthMeasureSpec, int heightMeasureSpec) {
     MeasureSpec.getMode(widthMeasureSpec) == MeasureSpec.EXACTLY
     && MeasureSpec.getMode(heightMeasureSpec) == MeasureSpec.EXACTLY;
     final boolean matchesSpecSize = getMeasuredWidth() == MeasureSpec.getSize(widthMeasureSpec)
     && getMeasuredHeight() == MeasureSpec.getSize(heightMeasureSpec);
     final boolean needsLayout = specChanged
     && (sAlwaysRemeasureExactly || !isSpecExactly || !matchesSpecSize);
     if (forceLayout || needsLayout) {
     mPrivateFlags &= ~PFLAG_MEASURED_DIMENSION_SET;
     resolveRtlPropertiesIfNeeded();
     int cacheIndex = forceLayout ? -1 : mMeasureCache.indexOfKey(key);
     if (cacheIndex < 0 || sIgnoreMeasureCache) {
     //在这里调用了onMeasure 方法
     onMeasure(widthMeasureSpec, heightMeasureSpec);
     mPrivateFlags3 &= ~PFLAG3_MEASURE_NEEDED_BEFORE_LAYOUT;
     } 
     }
     }
    

    最终调用了View的measure方法,而View中的measure()方法被定义成final类型,保证整个流程的执行.performLayout()和performDraw()也是类似的过程.

    而对于程序员,自定义View只需要关注他提供出来几个对应的方法,onMeasure/onLayout/onDraw. 关于这方面知识的网上介绍的资料很多,也可以很容易的看到View及ViewGroup里面的代码,推荐看LinerLayout的源码理解这部分知识,在这里不详细展开.

    Android的绘图原理浅析

    Android屏幕绘制

    关于绘制,就要从performDraw()说起,我们来看一下这个流程到底是怎么绘制的.

    //ViewRootImpl
    //1
     private void performDraw() {
     try {
     draw(fullRedrawNeeded);
     } finally {
     mIsDrawing = false;
     Trace.traceEnd(Trace.TRACE_TAG_VIEW);
     }
     }
     
     //2
     private void draw(boolean fullRedrawNeeded) {
     Surface surface = mSurface;
     if (!surface.isValid()) {
     return;
     }
     
     if (!drawSoftware(surface, mAttachInfo, xOffset, yOffset, scalingRequired, dirty)) {
     return;
     }
     }
     
     //3
     private boolean drawSoftware(Surface surface, AttachInfo attachInfo, int xoff, int yoff,
     boolean scalingRequired, Rect dirty) {
     Canvas canvas = mSurface.lockCanvas(dirty);
     } 
    

    看代码执行流程,1—>2->3, 最终拿到了Java层的canvas,然后进行一系列绘制操作.而canvas是通过Suface.lockCanvas()得到的.

    那么Surface又是一个什么呢?在这里Surface只是一个抽象,在APP创建窗口时,会调用WindowManager向WMS服务发起一个请求,携带上surface对象,只有他被分配完一段屏幕缓冲区才能真正对应屏幕上的一个窗口.

    来看一下Framework中的绘图架构.更好的理解Surface

    image

    Surface本质上仅仅代表了一个平面,绘制不同图案显然是一种操作,而不是一段数据,Android使用了Skia绘图驱动库来进行平面上的绘制,在程序中使用canvas来表示这个功能.

    双缓冲技术的介绍

    在ViewRootImpl中,我们看到接收到绘制消息后,不是立刻绘制而是调用scheduleTraversals,在scheduleTraversals调用Choreographer.postCallback(),这又是因为什么呢?这其实涉及到屏幕绘制原理(除了Android其他平台也是类似的).

    Android 绘制原理浅析「干货」

    我们都知道显示器以固定的频率刷新,比如 iPhone的 60Hz、iPad Pro的 120Hz。当一帧图像绘制完毕后准备绘制下一帧时,显示器会发出一个垂直同步信号(VSync),所以 60Hz的屏幕就会一秒内发出 60次这样的信号。

    并且一般地来说,计算机系统中,CPU、GPU和显示器以一种特定的方式协作:CPU将计算好的显示内容提交给 GPU,GPU渲染后放入帧缓冲区,然后视频控制器按照 VSync信号从帧缓冲区取帧数据传递给显示器显示.

    但是如果屏幕的缓冲区只有一块,那么这个VSync同步信号发出时, 开始刷新屏幕,那么你看到的屏幕就是一条一条的数据在变化.为了让屏幕看上去是一帧一帧的数据,一般都有两块缓冲区(也被成为双缓冲区).当数据要刷新时,直接替换另一个缓冲区的数据.

    双缓冲技术里面,如果不能特定时间刷新完的话(如果60HZ的话,就是16ms内)把这个缓冲区数据刷新完成,屏幕发出VSync同步信号,无法完成两个缓冲区的切换,那么就会造成卡顿现象.

    回到scheduleTraversals()上,这个地方就是使用了双缓冲技术(或者三缓冲技术),Choreographer接收VSync的同步信号,当屏幕刷新来时,开始屏幕的刷新操作。

    相关文章

      网友评论

        本文标题:Android 绘制原理浅析「干货」

        本文链接:https://www.haomeiwen.com/subject/jykhjctx.html