MultipleAlignment 对象
1. MultipleAlignment
classes
DNAMultipleAlignment
, RNAMultipleAlignment
, AAMultipleAlignment
可以将已比对的 DNA, RNA, 氨基酸序列作为一个单独的对象表现出来,并可以对其进行 masking.
Masking: Converting a DNA sequence [A,C,G,T] (usually repetitive or of low quality) to the uninformative character state N or to lower case characters [a,c,g,t] (soft masking).
2. 创建和Masking
2.1 创建 MultipleAlignment
对象
Biostrings
含有可以读取 clustaW, Phylip, Stolkholm 格式文件的函数。
用包内自带数据尝试一波:
origMAlign <-
readDNAMultipleAlignment(filepath = system.file("extdata",
"msx2_mRNA.aln",
package = "Biostrings"),
format = "clustal")
phylipMAlign <-
readAAMultipleAlignment(filepath = system.file("extdata",
"Phylip.txt",
package = "Biostrings"),
format = "phylip")
更改 origMAlign
的行名:
origMAlign
# DNAMultipleAlignment with 8 rows and 2343 columns
# aln names
# [1] -----TCCCGTCTCCGCAGC...ATTAAAAAAAAAAAAAAAAA gi|84452153|ref|N...
# [2] --------------------...-------------------- gi|208431713|ref|...
# [3] --------------------...-------------------- gi|118601823|ref|...
# [4] --------------------...-------------------- gi|114326503|ref|...
# [5] --------------------...-------------------- gi|119220589|ref|...
# [6] --------------------...-------------------- gi|148540149|ref|...
# [7] --------------CGGCTC...-------------------- gi|45383056|ref|N...
# [8] GGGGGAGACTTCAGAAGTTG...-------------------- gi|213515133|ref|...
rownames(origMAlign)
# [1] "gi|84452153|ref|NM_002449.4|" "gi|208431713|ref|NM_001135625."
# [3] "gi|118601823|ref|NM_001079614." "gi|114326503|ref|NM_013601.2|"
# [5] "gi|119220589|ref|NM_012982.3|" "gi|148540149|ref|NM_001003098."
# [7] "gi|45383056|ref|NM_204559.1|" "gi|213515133|ref|NM_001141603."
rownames(origMAlign) <- c("Human","Chimp","Cow","Mouse","Rat",
"Dog","Chicken","Salmon")
origMAlign
# DNAMultipleAlignment with 8 rows and 2343 columns
# aln names
# [1] -----TCCCGTCTCCGCAGC...ATTAAAAAAAAAAAAAAAAA Human
# [2] --------------------...-------------------- Chimp
# [3] --------------------...-------------------- Cow
# [4] --------------------...-------------------- Mouse
# [5] --------------------...-------------------- Rat
# [6] --------------------...-------------------- Dog
# [7] --------------CGGCTC...-------------------- Chicken
# [8] GGGGGAGACTTCAGAAGTTG...-------------------- Salmon
展示细节:
detail(origMAlign)
image
2.2 Masking
分别使用函数 rowmask()
和 colmask()
:
maskTest <- origMAlign
rowmask(maskTest) <- IRanges(start=1,end=3) ## operations to mask rows
rowmask(maskTest)
# NormalIRanges object with 1 range and 0 metadata columns:
# start end width
# <integer> <integer> <integer>
# [1] 1 3 3
maskTest
# DNAMultipleAlignment with 8 rows and 2343 columns
# aln names
# [1] ####################...#################### Human
# [2] ####################...#################### Chimp
# [3] ####################...#################### Cow
# [4] --------------------...-------------------- Mouse
# [5] --------------------...-------------------- Rat
# [6] --------------------...-------------------- Dog
# [7] --------------CGGCTC...-------------------- Chicken
# [8] GGGGGAGACTTCAGAAGTTG...-------------------- Salmon
colmask(maskTest) <- IRanges(start=c(1,1000),end=c(500,2343))
colmask(maskTest)
# NormalIRanges object with 2 ranges and 0 metadata columns:
# start end width
# <integer> <integer> <integer>
# [1] 1 500 500
# [2] 1000 2343 1344
maskTest
# DNAMultipleAlignment with 8 rows and 2343 columns
# aln names
# [1] ####################...#################### Human
# [2] ####################...#################### Chimp
# [3] ####################...#################### Cow
# [4] ####################...#################### Mouse
# [5] ####################...#################### Rat
# [6] ####################...#################### Dog
# [7] ####################...#################### Chicken
# [8] ####################...#################### Salmon
通过赋值 'NULL',移除被 mask 的行和列:
rowmask(maskTest) <- NULL
rowmask(maskTest)
# NormalIRanges object with 0 ranges and 0 metadata columns:
# start end width
# <integer> <integer> <integer>
colmask(maskTest) <- NULL
colmask(maskTest)
# NormalIRanges object with 0 ranges and 0 metadata columns:
# start end width
# <integer> <integer> <integer>
maskTest
# DNAMultipleAlignment with 8 rows and 2343 columns
# aln names
# [1] -----TCCCGTCTCCGCAGC...ATTAAAAAAAAAAAAAAAAA Human
# [2] --------------------...-------------------- Chimp
# [3] --------------------...-------------------- Cow
# [4] --------------------...-------------------- Mouse
# [5] --------------------...-------------------- Rat
# [6] --------------------...-------------------- Dog
# [7] --------------CGGCTC...-------------------- Chicken
# [8] GGGGGAGACTTCAGAAGTTG...-------------------- Salmon
通过参数 invert=TRUE
,可以设定要留下的行和列,并能得到与之前的操作完全一致的mask:
rowmask(maskTest, invert=TRUE) <- IRanges(start=4,end=8)
## IRange的参数也与之前的相反/互补
rowmask(maskTest)
# NormalIRanges object with 1 range and 0 metadata columns:
# start end width
# <integer> <integer> <integer>
# [1] 1 3 3
maskTest
# DNAMultipleAlignment with 8 rows and 2343 columns
# aln names
# [1] ####################...#################### Human
# [2] ####################...#################### Chimp
# [3] ####################...#################### Cow
# [4] --------------------...-------------------- Mouse
# [5] --------------------...-------------------- Rat
# [6] --------------------...-------------------- Dog
# [7] --------------CGGCTC...-------------------- Chicken
# [8] GGGGGAGACTTCAGAAGTTG...-------------------- Salmon
colmask(maskTest, invert=TRUE) <- IRanges(start=501,end=999) ##列的操作同上
colmask(maskTest)
# NormalIRanges object with 2 ranges and 0 metadata columns:
# start end width
# <integer> <integer> <integer>
# [1] 1 500 500
# [2] 1000 2343 1344
maskTest
# DNAMultipleAlignment with 8 rows and 2343 columns
# aln names
# [1] ####################...#################### Human
# [2] ####################...#################### Chimp
# [3] ####################...#################### Cow
# [4] ####################...#################### Mouse
# [5] ####################...#################### Rat
# [6] ####################...#################### Dog
# [7] ####################...#################### Chicken
# [8] ####################...#################### Salmon
移除mask:
colmask(maskTest) <- NULL
rowmask(maskTest) <- NULL
针对参数 append=
, 进行不同的设置和操作:
The append argument takes union, replace or intersect to indicate how to combine the new value with rowmask(x),
## 默认状态,mask全部
rowmask(maskTest) <- IRanges(start=1,end=3)
maskTest
# DNAMultipleAlignment with 8 rows and 2343 columns
# aln names
# [1] ####################...#################### Human
# [2] ####################...#################### Chimp
# [3] ####################...#################### Cow
# [4] --------------------...-------------------- Mouse
# [5] --------------------...-------------------- Rat
# [6] --------------------...-------------------- Dog
# [7] --------------CGGCTC...-------------------- Chicken
# [8] GGGGGAGACTTCAGAAGTTG...-------------------- Salmon
## append="intersect", mask the rows that intersect with masked rows
rowmask(maskTest,append="intersect") <- IRanges(start=2,end=5)
maskTest
# DNAMultipleAlignment with 8 rows and 2343 columns
# aln names
# [1] -----TCCCGTCTCCGCAGC...ATTAAAAAAAAAAAAAAAAA Human
# [2] ####################...#################### Chimp
# [3] ####################...#################### Cow
# [4] --------------------...-------------------- Mouse
# [5] --------------------...-------------------- Rat
# [6] --------------------...-------------------- Dog
# [7] --------------CGGCTC...-------------------- Chicken
# [8] GGGGGAGACTTCAGAAGTTG...-------------------- Salmon
## append="replace"
rowmask(maskTest,append="replace") <- IRanges(start=5,end=8)
maskTest
# DNAMultipleAlignment with 8 rows and 2343 columns
# aln names
# [1] -----TCCCGTCTCCGCAGC...ATTAAAAAAAAAAAAAAAAA Human
# [2] --------------------...-------------------- Chimp
# [3] --------------------...-------------------- Cow
# [4] --------------------...-------------------- Mouse
# [5] ####################...#################### Rat
# [6] ####################...#################### Dog
# [7] ####################...#################### Chicken
# [8] ####################...#################### Salmon
## append="union"
rowmask(maskTest,append="union") <- IRanges(start=7,end=8)
maskTest
# DNAMultipleAlignment with 8 rows and 2343 columns
# aln names
# [1] -----TCCCGTCTCCGCAGC...ATTAAAAAAAAAAAAAAAAA Human
# [2] --------------------...-------------------- Chimp
# [3] --------------------...-------------------- Cow
# [4] --------------------...-------------------- Mouse
# [5] ####################...#################### Rat
# [6] ####################...#################### Dog
# [7] ####################...#################### Chicken
# [8] ####################...#################### Salmon
函数 maskMotif()
也可以对 MultipleAlignment
对象进行操作,用于在列的水平上mask相同序列的出现。
tataMasked <- maskMotif(origMAlign, "TATA")
colmask(tataMasked)
# NormalIRanges object with 5 ranges and 0 metadata columns:
# start end width
# <integer> <integer> <integer>
# [1] 811 814 4
# [2] 1180 1183 4
# [3] 1186 1191 6
# [4] 1204 1207 4
# [5] 1218 1221 4
函数 maskGaps()
可以基于设定的参数在列的水平上进行mask.
min.fraction A value in [0,1] that indicates the minimum fraction needed to call a gap in
the consensus string (default is 0.5).
min.block.width A positive integer that indicates the minimum number of consecutive gaps
to mask, as defined by min.fraction (default is 4).
autoMasked <- maskGaps(origMAlign, min.fraction=0.5, min.block.width=4)
autoMasked
# DNAMultipleAlignment with 8 rows and 2343 columns
# aln names
# [1] ####################...#################### Human
# [2] ####################...#################### Chimp
# [3] ####################...#################### Cow
# [4] ####################...#################### Mouse
# [5] ####################...#################### Rat
# [6] ####################...#################### Dog
# [7] ####################...#################### Chicken
# [8] ####################...#################### Salmon
as.matrix()
可以应用在 MultipleAlignment
对象上,将其转换为矩阵。
full = as.matrix(origMAlign)
dim(full)
# [1] 8 2343
partial = as.matrix(autoMasked)
dim(partial)
# [1] 8 1143
3. 分析应用
3.1 完成mask的序列的碱基频率
alphabetFrequency(autoMasked)
# A C G T M R W S Y K V H D B N - + .
# [1,] 260 351 296 218 0 0 0 0 0 0 0 0 0 0 0 18 0 0
# [2,] 171 271 231 128 0 0 0 0 0 0 0 0 0 0 3 339 0 0
# [3,] 277 360 275 209 0 0 0 0 0 0 0 0 0 0 0 22 0 0
# [4,] 265 343 277 226 0 0 0 0 0 0 0 0 0 0 0 32 0 0
# [5,] 251 345 287 229 0 0 0 0 0 0 0 0 0 0 0 31 0 0
# [6,] 160 285 241 118 0 0 0 0 0 0 0 0 0 0 0 339 0 0
# [7,] 224 342 273 190 0 0 0 0 0 0 0 0 0 0 0 114 0 0
# [8,] 268 289 273 262 0 0 0 0 0 0 0 0 0 0 0 51 0 0
3.2 计算一致性矩阵 (consensus matrix)
consensusMatrix(autoMasked, baseOnly=TRUE)[, 1138:1143]
# [,1] [,2] [,3] [,4] [,5] [,6]
# A 0 1 0 0 1 0
# C 5 4 4 0 1 1
# G 1 1 1 0 0 1
# T 0 0 1 6 4 4
# other 2 2 2 2 2 2
3.3 提取一致性序列 (consensus string) & Consensus Views
substr(consensusString(autoMasked),80,125)
# [1] "####CRGABAMGTCA-YRGCTTCTCYGTSCAWAGGCRRTGRCYTGT"
consensusViews(autoMasked)
# Views on a 2343-letter BString subject
# subject: ----------------------VWVMKYY...----------------------------
# views:
# start end width
# [1] 84 325 242 [CRGABAMGTCA-YRGCTTCTCY...TCSGCYGGSGCYRYCCTGSGG]
# [2] 330 332 3 [CCR]
# [3] 338 1191 854 [CTGCTGCTGYCGGGVCACGGCG...GTTTTTATGTATAAATATATA]
# [4] 1198 1241 44 [ATAAAATATAAKAC--TTTTTATAYRSCARATGTAAAAATTCAA]
3.4 聚类分析&树形图
用masking前的序列:
sdist <- stringDist(as(origMAlign,"DNAStringSet"), method="hamming")
clust <- hclust(sdist, method = "single")
plot(clust)
嗯,得到了一张hin奇怪的图。
如果用masking后的序列:
sdist <- stringDist(as(autoMasked,"DNAStringSet"), method="hamming")
clust <- hclust(sdist, method = "single")
plot(clust)
改善,但依旧——
当然小鼠、大鼠和人类的高相似性是因为这三个物种的基因组序列整体更长,而第一张图里的奇怪关系是因为 rodent/mouse/human 之间的 extra "length", 而不是保守区域的相似性。
4. 导出文件
将 MultipleAlignment
对象转换为 DNAStringSet
,导出为 fasta 文件。
DNAStr = as(origMAlign, "DNAStringSet")
writeXStringSet(DNAStr, file="myFile.fa")
References
-
MultipleAlignment Objects https://bioconductor.org/packages/release/bioc/vignettes/Biostrings/inst/doc/MultipleAlignments.pdf
-
Nsofor C A, Ogbulie T E, Ugbogu O, et al. Whole Genome Sequencing: Bacterial Typing Revolutionized[J]. Journal of Microbiology and Biotechnology Research, 2015, 1(3): 38-48.
最后,向大家隆重推荐生信技能树的一系列干货!
- 生信技能树全球公益巡讲:https://mp.weixin.qq.com/s/E9ykuIbc-2Ja9HOY0bn_6g
- B站公益74小时生信工程师教学视频合辑:https://mp.weixin.qq.com/s/IyFK7l_WBAiUgqQi8O7Hxw
- 招学徒:https://mp.weixin.qq.com/s/KgbilzXnFjbKKunuw7NVfw
网友评论