决策树 学习笔记

作者: 喵_十八 | 来源:发表于2017-12-04 14:38 被阅读0次

基本概念

算法杂货铺的这篇介绍说的比较生动详细

决策树算法原理(上) 对ID3、C4.5 的算法思想做了总结。介绍了两种算法的过程,以及优缺点。
ID3 构造决策树是基于信息增益最大的情况进行。主要存在如下问题:

  • ID3没有考虑连续特征,比如长度,密度都是连续值,无法在ID3运用。这大大限制了ID3的用途。
  • ID3采用信息增益大的特征优先建立决策树的节点。很快就被人发现,在相同条件下,取值比较多的特征比取值少的特征信息增益大。比如一个变量有2个值,各为1/2,另一个变量为3个值,各为1/3,其实他们都是完全不确定的变量,但是取3个值的比取2个值的信息增益大。如果校正这个问题呢?
  • ID3算法对于缺失值的情况没有做考虑
  • 没有考虑过拟合的问题
    C4.5 在ID3 的基础上进行了改进,解决以上问题
  • 连续的特征离散化
  • 引入信息增益比
  • 通过同类的数据加权计算缺失值,或 将缺失特征的样本按比例分给各个类。
  • 引入正则化系数

决策树算法原理(下) 在提出C4.5 的基础上,主要介绍了CART 算法,也是在sklearn 中使用的方法。介绍了CART 算法的过程以及剪枝过程。

三种方法对比

scikit-learn决策树算法类库使用小结 从实践角度来介绍决策树算法,介绍了重要参数的含义,调参注意点,以及结果可视化的一些内容。

决策树剪枝算法 介绍决策树的剪枝理论,避免guo
决策树 (Decision Tree) 进阶应用 CART剪枝方法及Python实现方式

相关文章

  • 决策树学习笔记整理

    决策树学习笔记整理-单身狗那个 学习决策树,老板投资那个 关联分析算法:Apriori ABC 成本法

  • 机器学习笔记(6):决策树

    本文来自之前在Udacity上自学机器学习的系列笔记。这是第6篇,介绍了监督学习中的决策树模型。 决策树 决策树是...

  • 《机器学习》西瓜书学习笔记(三)

    上一篇笔记在这里:《机器学习》西瓜书学习笔记(二) 第四章 决策树 4.1 基本流程 决策树的生成是一个递归过程,...

  • 机器学习笔记--决策树

    这里开始机器学习的笔记记录。今天的这篇是一个分类方法--决策树。 决策树优点:计算复杂度不高,输出结果易于理解,对...

  • 决策树

    1、决策树 决策树学习通常包括3个步骤: 特征选择。 决策树生成。 决策树剪枝。 决策树的学习目标是:根据给定的训...

  • [机器学习]决策树

    决策树 @(技术博客)[机器学习, 决策树, python] 学习决策树首先要搞清楚决策树是什么(what),在弄...

  • XGBoost: 从决策树说起

    学习笔记,可能有些谬误,请批判性阅读。 决策树用来进行分类或回归都是可以的。 一棵决策树构成的分类器,从根节点开始...

  • 决策树算法总结

    目录 一、决策树算法思想 二、决策树学习本质 三、总结 一、决策树(decision tree)算法思想: 决策树...

  • 决策树学习笔记

    决策树 1.概述 决策树由节点和有向边组成,节点有两种类型,内部节点和叶节点,内部节点表示一个特征或属性,叶节点表...

  • 决策树 学习笔记

    基本概念 算法杂货铺的这篇介绍说的比较生动详细 决策树算法原理(上) 对ID3、C4.5 的算法思想做了总结。介绍...

网友评论

    本文标题:决策树 学习笔记

    本文链接:https://www.haomeiwen.com/subject/loetixtx.html