美文网首页javaAndroid开发程序员
Java线程池的实现原理

Java线程池的实现原理

作者: Frank_Kivi | 来源:发表于2017-09-30 01:08 被阅读258次

Java提供了一整套的线程管理机制,就是我们常常提起的线程池。今天我们来研究一下它的实现原理,重点研究的是我们提交的任务是如何得到执行的。
我们在构建ExecutorService时,都是调用Executors的方法。我们来查看一下Executors的方法。

    public static ExecutorService newFixedThreadPool(int nThreads) {
        return new ThreadPoolExecutor(nThreads, nThreads,
                                      0L, TimeUnit.MILLISECONDS,
                                      new LinkedBlockingQueue<Runnable>());
    }
    
    public static ExecutorService newFixedThreadPool(int nThreads, ThreadFactory threadFactory) {
        return new ThreadPoolExecutor(nThreads, nThreads,
                                      0L, TimeUnit.MILLISECONDS,
                                      new LinkedBlockingQueue<Runnable>(),
                                      threadFactory);
    }
    public static ExecutorService newCachedThreadPool() {
        return new ThreadPoolExecutor(0, Integer.MAX_VALUE,
                                      60L, TimeUnit.SECONDS,
                                      new SynchronousQueue<Runnable>());
    }

我们以几个常用的为例,可以看到,它们都是调用了ThreadPoolExecutor这个类的构造。也就是说当我们得到的ExecutorService实际是ThreadPoolExecutor的实例。
下边我们来查看一下ThreadPoolExecutor的构造方法。

    public ThreadPoolExecutor(int corePoolSize,
                              int maximumPoolSize,
                              long keepAliveTime,
                              TimeUnit unit,
                              BlockingQueue<Runnable> workQueue) {
        this(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue,
             Executors.defaultThreadFactory(), defaultHandler);
    }

    public ThreadPoolExecutor(int corePoolSize,
                              int maximumPoolSize,
                              long keepAliveTime,
                              TimeUnit unit,
                              BlockingQueue<Runnable> workQueue,
                              ThreadFactory threadFactory) {
        this(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue,
             threadFactory, defaultHandler);
    }

    public ThreadPoolExecutor(int corePoolSize,
                              int maximumPoolSize,
                              long keepAliveTime,
                              TimeUnit unit,
                              BlockingQueue<Runnable> workQueue,
                              RejectedExecutionHandler handler) {
        this(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue,
             Executors.defaultThreadFactory(), handler);
    }

    public ThreadPoolExecutor(int corePoolSize,
                              int maximumPoolSize,
                              long keepAliveTime,
                              TimeUnit unit,
                              BlockingQueue<Runnable> workQueue,
                              ThreadFactory threadFactory,
                              RejectedExecutionHandler handler) {
//构造方法是相互调用的,这个是最终执行的方法。
//首先进行异常判断。
        if (corePoolSize < 0 ||
            maximumPoolSize <= 0 ||
            maximumPoolSize < corePoolSize ||
            keepAliveTime < 0)
            throw new IllegalArgumentException();
        if (workQueue == null || threadFactory == null || handler == null)
            throw new NullPointerException();
//线程池线程数的大小。
        this.corePoolSize = corePoolSize;
//线程池最大线程数
        this.maximumPoolSize = maximumPoolSize;
//任务队列,非常重要,一会分析
        this.workQueue = workQueue;
//当线程空闲的最大时间。
        this.keepAliveTime = unit.toNanos(keepAliveTime);
//创建线程的工厂,使用默认的即可。
        this.threadFactory = threadFactory;
//执行任务失败的回调。
        this.handler = handler;
    }

我们关心的其实是把任务提交之后,它的执行流程。所以来查看execute方法。

    public void execute(Runnable command) {
        if (command == null)
            throw new NullPointerException();
        /*
         * Proceed in 3 steps:
         *
         * 1. If fewer than corePoolSize threads are running, try to
         * start a new thread with the given command as its first
         * task.  The call to addWorker atomically checks runState and
         * workerCount, and so prevents false alarms that would add
         * threads when it shouldn't, by returning false.
         *
         * 2. If a task can be successfully queued, then we still need
         * to double-check whether we should have added a thread
         * (because existing ones died since last checking) or that
         * the pool shut down since entry into this method. So we
         * recheck state and if necessary roll back the enqueuing if
         * stopped, or start a new thread if there are none.
         *
         * 3. If we cannot queue task, then we try to add a new
         * thread.  If it fails, we know we are shut down or saturated
         * and so reject the task.
         */
        <!--获得当前运行的线程数,使用原子操作,线程安全。使用按位与的方式,保证这个c可以表示不同状态栏的线程,-->
        int c = ctl.get();
        if (workerCountOf(c) < corePoolSize) {
            <!--如果小于线程池的核心线程数,就调用addWorker,addWorker请看下边分析-->
            if (addWorker(command, true))
                return;
            c = ctl.get();
        }
        <!--没有创建一个新的线程来执行当前command-->
        <!--把command加入到当前的workQueue队列中-->
        if (isRunning(c) && workQueue.offer(command)) {
            int recheck = ctl.get();
            <!--如果线程池没有运行的线程,同时也可以把command成功出队,就调用reject,其实就是用那个处理错误的handler来处理-->
            if (! isRunning(recheck) && remove(command))
                reject(command);
            else if (workerCountOf(recheck) == 0)
            <!--如果线程数目为0,就重新创建,这次不限制只使用corePoolSize-->
                addWorker(null, false);
        }
        else if (!addWorker(command, false))
            <!--再创建线程执行一次,失败就通知handler来处理-->
            reject(command);
    }
<!--创建一个新的线程来执行当前任务,成功返回true-->
private boolean addWorker(Runnable firstTask, boolean core) {
        retry:
        for (;;) {
            int c = ctl.get();
            int rs = runStateOf(c);
            
            // Check if queue empty only if necessary.
            <!--如果当前线程池的状态是SHUTDOWN但是 firstTask不为空,或者workQueue还有任务,表示出现了异常,返回false-->
            if (rs >= SHUTDOWN &&
                ! (rs == SHUTDOWN &&
                   firstTask == null &&
                   ! workQueue.isEmpty()))
                return false;
            <!--开启循环去创建线程-->
            for (;;) {
                int wc = workerCountOf(c);
                <!--如果当前线路程数已经大于或等于限制,创建失败,返回false-->
                if (wc >= CAPACITY ||
                    wc >= (core ? corePoolSize : maximumPoolSize))
                    return false;
                <!--尝试去创建线程,如果成功,就跳出循环  compareAndIncrementWorkerCount下边分析-->
                if (compareAndIncrementWorkerCount(c))
                    break retry;
                c = ctl.get();  // Re-read ctl
                <!--如果线程状态已经发生了变化,就跳出当前循环,继续外边的循环。-->
                if (runStateOf(c) != rs)
                    continue retry;
                // else CAS failed due to workerCount change; retry inner loop
            }
        }

        boolean workerStarted = false;
        boolean workerAdded = false;
        Worker w = null;
        try {
            <!--Worker可以简单理解为就是一个封装咱们提交的Runnable的任务。-->
            w = new Worker(firstTask);
            <!--woker在new的同时会创建一个thread,后边分析-->
            final Thread t = w.thread;
            if (t != null) {
                final ReentrantLock mainLock = this.mainLock;
                mainLock.lock();
                try {
                    // Recheck while holding lock.
                    // Back out on ThreadFactory failure or if
                    // shut down before lock acquired.
                    int rs = runStateOf(ctl.get());

                    if (rs < SHUTDOWN ||
                        (rs == SHUTDOWN && firstTask == null)) {
                        if (t.isAlive()) // precheck that t is startable
                            throw new IllegalThreadStateException();
                            <!--创建成功后把Worker加入到它的管理集合中-->
                        workers.add(w);
                        int s = workers.size();
                        if (s > largestPoolSize)
                            largestPoolSize = s;
                        workerAdded = true;
                    }
                } finally {
                    mainLock.unlock();
                }
                if (workerAdded) {
                    t.start();
                    workerStarted = true;
                }
            }
        } finally {
            if (! workerStarted)
                addWorkerFailed(w);
        }
        return workerStarted;
    }
    

这里我们已经明白了,当一个任务提交之后,当前线程数小于corePoolSize是会去创建一个Woker来执行它。有些情况下会把它加入到workQueue中,当加入到集合中它是如何执行的呢。
这就要说到Worker了,我们前边已经说了,有一个专门来执行任务的Woker对象,还有一个专门管理Worker的集合Workers。

<!--可以看到WorKer本身实现了 Runnable-->
 private final class Worker
        extends AbstractQueuedSynchronizer
        implements Runnable
    {
        /**
         * This class will never be serialized, but we provide a
         * serialVersionUID to suppress a javac warning.
         */
        private static final long serialVersionUID = 6138294804551838833L;

        /** Thread this worker is running in.  Null if factory fails. */
        final Thread thread;
        /** Initial task to run.  Possibly null. */
        Runnable firstTask;
        /** Per-thread task counter */
        volatile long completedTasks;

        /**
         * Creates with given first task and thread from ThreadFactory.
         * @param firstTask the first task (null if none)
         */
        Worker(Runnable firstTask) {
            setState(-1); // inhibit interrupts until runWorker
            this.firstTask = firstTask;
            <!--这就是前边说的Worker里边的线程,它又把this放进去,所以前边addWorker中的t.start最后执行的其实就是worker里边run方法-->
            this.thread = getThreadFactory().newThread(this);
        }

        /** Delegates main run loop to outer runWorker. */
        public void run() {
            <!--最终是调用runWorker为实现的-->
            runWorker(this);
        }

        // Lock methods
        //
        // The value 0 represents the unlocked state.
        // The value 1 represents the locked state.

        protected boolean isHeldExclusively() {
            return getState() != 0;
        }

        protected boolean tryAcquire(int unused) {
            if (compareAndSetState(0, 1)) {
                setExclusiveOwnerThread(Thread.currentThread());
                return true;
            }
            return false;
        }

        protected boolean tryRelease(int unused) {
            setExclusiveOwnerThread(null);
            setState(0);
            return true;
        }

        public void lock()        { acquire(1); }
        public boolean tryLock()  { return tryAcquire(1); }
        public void unlock()      { release(1); }
        public boolean isLocked() { return isHeldExclusively(); }

        void interruptIfStarted() {
            Thread t;
            if (getState() >= 0 && (t = thread) != null && !t.isInterrupted()) {
                try {
                    t.interrupt();
                } catch (SecurityException ignore) {
                }
            }
        }
    }
<!--最终去执行任务的方法-->
final void runWorker(Worker w) {
        Thread wt = Thread.currentThread();
        <!--首先去把当前Worker身上绑定的任务取出来,然后把worker身上的任务置为null-->
        Runnable task = w.firstTask;
        w.firstTask = null;
        w.unlock(); // allow interrupts
        boolean completedAbruptly = true;
        try {
        <!--这里是关键,开启一个循环,当前任务不为空或者还能从getTask得到任务,就一直循环执行。-->
            while (task != null || (task = getTask()) != null) {
                w.lock();
                // If pool is stopping, ensure thread is interrupted;
                // if not, ensure thread is not interrupted.  This
                // requires a recheck in second case to deal with
                // shutdownNow race while clearing interrupt
                if ((runStateAtLeast(ctl.get(), STOP) ||
                     (Thread.interrupted() &&
                      runStateAtLeast(ctl.get(), STOP))) &&
                    !wt.isInterrupted())
                    wt.interrupt();
                try {
                    beforeExecute(wt, task);
                    Throwable thrown = null;
                    try {
                        task.run();
                    } catch (RuntimeException x) {
                        thrown = x; throw x;
                    } catch (Error x) {
                        thrown = x; throw x;
                    } catch (Throwable x) {
                        thrown = x; throw new Error(x);
                    } finally {
                        afterExecute(task, thrown);
                    }
                } finally {
                    task = null;
                    w.completedTasks++;
                    w.unlock();
                }
            }
            completedAbruptly = false;
        } finally {
            <!--最终没有任务时就会退出-->
            processWorkerExit(w, completedAbruptly);
        }
    }

看似worker执行完任务是会退出的,实际上却很难,因为getTask()是个阻塞式的方法,只有在特殊情况下才会返回null。

private Runnable getTask() {
        boolean timedOut = false; // Did the last poll() time out?
        <!--是一个死循环-->
        for (;;) {
            int c = ctl.get();
            int rs = runStateOf(c);

            // Check if queue empty only if necessary.
            if (rs >= SHUTDOWN && (rs >= STOP || workQueue.isEmpty())) {
                只有当线程池关闭了并且 线程池停止或者队列为空的时候才会返回null, 正常使用的时候都不会进来。
                decrementWorkerCount();
                return null;
            }

            int wc = workerCountOf(c);

            // Are workers subject to culling?
            boolean timed = allowCoreThreadTimeOut || wc > corePoolSize;

            if ((wc > maximumPoolSize || (timed && timedOut))
                && (wc > 1 || workQueue.isEmpty())) {
                如果worker的数量比maximumPoolSize还大,或者     等待超时并且队列为空的时候 才会返回null
                if (compareAndDecrementWorkerCount(c))
                    return null;
                continue;
            }

            try {
                Runnable r = timed ?
                    workQueue.poll(keepAliveTime, TimeUnit.NANOSECONDS) :
                    workQueue.take();
                if (r != null)
                    return r;
                timedOut = true;
            } catch (InterruptedException retry) {
                timedOut = false;
            }
        }
    }

到此为止,我们简单的线程池的实现原理分析了一下。流程是这样的,首先我们提交一个任务。线程池可能会new一个worker也就是线程来执行这个任务,也可能把它加入到任务队列中(创建worker失败),然后等待执行。一旦一个worker启动之后,正常情况下它就不会停下来,执行完一个任务就执行下一个任务,因为取得任务的方法是阻塞式的。

相关文章

  • ThreadPoolExecutor线程池原理

    本文参考Java线程池---addWorker方法解析Java线程池ThreadPoolExecutor实现原理线...

  • 美团一面总结

    线程池的实现原理 参考: Java线程池实现原理及其在美团业务中的实践[https://tech.meituan....

  • 线程以及java线程池实现分享

    线程以及java线程池实现分享 线程简介 JDK线程池的工作原理 JDK线程池的实现细节 1.线程简介-由来 1....

  • JAVA线程池常见用法及其原理

    JAVA线程池常见用法及其原理 JAVA线程池常见用法: 1.代码实现 import lombok.extern....

  • 线程池的原理

    参考 深入Java源码理解线程池原理 线程池是对CPU利用的优化手段 线程池使用池化技术实现,替他的实现还有连接池...

  • Java中线程池,你真的了解会用吗

    在《深入源码分析Java线程池的实现原理》这篇文章中,我们介绍过了Java中线程池的常见用法以及基本原理。 在文中...

  • 面试题2019年7月

    线程池原理 参考:Java 线程池原理分析 线程池工作原理:1、线程数量小于 corePoolSize,直接创建新...

  • JAVA线程及线程池使用

    参考如下文章进行整理: JAVA四种线程池的使用 Java线程池实现原理及其在美团业务中的实践 JAVA几种线程使...

  • 分析Java线程池Callable任务执行原理

    Java并发编程源码分析系列: 分析Java线程池的创建 分析Java线程池执行原理 上一篇分析了线程池的执行原理...

  • 线程池源码解读

    深入分析java线程池的实现原理 ps: 用一个AtomicInteger记录 线程池状态和其中的线程个数, 其中...

网友评论

  • 123861edb623:ctl是很重要的一个点,里面很多方法都在用ctl维护着
    Frank_Kivi:是的,暂时能明白的就是它是一个原子操作单位,所以线程安全。然后可以通过位运算来得到非常多的信息,具体是怎么操作的还不是太明白,有了解的可以分享下。

本文标题:Java线程池的实现原理

本文链接:https://www.haomeiwen.com/subject/mcpjextx.html