美文网首页机器学习
支持向量机(SVM)-Python

支持向量机(SVM)-Python

作者: 灵妍 | 来源:发表于2018-03-13 14:01 被阅读25次

    自然语言描述:
    在库中导入SVM类-创建类对象-用训练集拟合分类器
    将拟合好的分类器直接导入分类器模板即可
    代码:

    # Support Vector Machine (SVM)
    # Importing the libraries
    import numpy as np
    import matplotlib.pyplot as plt
    import pandas as pd
    
    # Importing the dataset
    dataset = pd.read_csv('Social_Network_Ads.csv')
    X = dataset.iloc[:, [2, 3]].values
    y = dataset.iloc[:, 4].values
    
    # Splitting the dataset into the Training set and Test set
    from sklearn.model_selection import train_test_split
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.25, random_state = 0)
    
    # Feature Scaling
    from sklearn.preprocessing import StandardScaler
    sc = StandardScaler()
    X_train = sc.fit_transform(X_train)
    X_test = sc.transform(X_test)
    
    # Fitting SVM to the Training set
    from sklearn.svm import SVC
    classifier = SVC(kernel = 'linear', random_state = 0)
    classifier.fit(X_train, y_train)
    
    # Predicting the Test set results
    y_pred = classifier.predict(X_test)
    
    # Making the Confusion Matrix
    from sklearn.metrics import confusion_matrix
    cm = confusion_matrix(y_test, y_pred)
    
    # Visualising the Training set results
    from matplotlib.colors import ListedColormap
    X_set, y_set = X_train, y_train
    X1, X2 = np.meshgrid(np.arange(start = X_set[:, 0].min() - 1, stop = X_set[:, 0].max() + 1, step = 0.01),
                         np.arange(start = X_set[:, 1].min() - 1, stop = X_set[:, 1].max() + 1, step = 0.01))
    plt.contourf(X1, X2, classifier.predict(np.array([X1.ravel(), X2.ravel()]).T).reshape(X1.shape),
                 alpha = 0.75, cmap = ListedColormap(('red', 'green')))
    plt.xlim(X1.min(), X1.max())
    plt.ylim(X2.min(), X2.max())
    for i, j in enumerate(np.unique(y_set)):
        plt.scatter(X_set[y_set == j, 0], X_set[y_set == j, 1],
                    c = ListedColormap(('orange', 'blue'))(i), label = j)
    plt.title('SVM (Training set)')
    plt.xlabel('Age')
    plt.ylabel('Estimated Salary')
    plt.legend()
    plt.show()
    
    # Visualising the Test set results
    from matplotlib.colors import ListedColormap
    X_set, y_set = X_test, y_test
    X1, X2 = np.meshgrid(np.arange(start = X_set[:, 0].min() - 1, stop = X_set[:, 0].max() + 1, step = 0.01),
                         np.arange(start = X_set[:, 1].min() - 1, stop = X_set[:, 1].max() + 1, step = 0.01))
    plt.contourf(X1, X2, classifier.predict(np.array([X1.ravel(), X2.ravel()]).T).reshape(X1.shape),
                 alpha = 0.75, cmap = ListedColormap(('red', 'green')))
    plt.xlim(X1.min(), X1.max())
    plt.ylim(X2.min(), X2.max())
    for i, j in enumerate(np.unique(y_set)):
        plt.scatter(X_set[y_set == j, 0], X_set[y_set == j, 1],
                    c = ListedColormap(('orange', 'blue'))(i), label = j)
    plt.title('SVM (Test set)')
    plt.xlabel('Age')
    plt.ylabel('Estimated Salary')
    plt.legend()
    plt.show()
    

    核心代码:
    from sklearn.svm import SVC
    classifier = SVC(kernel = 'linear', random_state = 0)
    classifier.fit(X_train, y_train)
    代码解释:
    选择核函数为线性,后面的参数可要可不要。
    运行结果:


    SVM混淆矩阵.PNG SVM测试集.PNG SVM训练集.PNG

    可以看出,SVM线性核函数与逻辑回归模型结果差不读,并没有提高预测的精度。

    相关文章

      网友评论

        本文标题:支持向量机(SVM)-Python

        本文链接:https://www.haomeiwen.com/subject/mxenfftx.html