美文网首页Android开发Android开发经验谈Android开发
Android 复盘——帮你彻底了解消息机制

Android 复盘——帮你彻底了解消息机制

作者: _Binguner | 来源:发表于2019-04-25 22:29 被阅读13次

    # 1. 什么是消息机制

    说到消息机制,作为一名 Android 开发者一定先想到的是 Handler。Handler 就是 Android 消息机制的上层接口,我们可用通过 Handler 轻松的在不同的线程中切换任务,但 Handler 的实现还有两个很重要的概念 MessageQueueLooper

    MessageQueue 的翻译是消息队列,它的内部采用了单链表的结构存储 Handler 对象发送的消息。

    Looper 的作用是不断地查询 MessageQueue 中是否有消息,如果 Looper 发现 MessageQueue 中存入了新的消息,它就会去处理这条消息,如果没有新消息,Looper 就会以无限循环的方式去查询 MessageQueue 中是否有新消息。

    # 2. 为什么要有 Handler

    ## 2.1)官方文档中 Handler 的主要作用

    (1)安排将来某个时间点执行的 MessageRunnables
    (2)在不同于当前的线程上执行的操作;

    ## 2.2)Handler 被用来做的最多的一件事就是更新主线程的 UI。

    在 Android 开发中,默认子线程是不可以更新 UI 的,这一点可以从 View 的最高层级 ViewRootImpl 类中找到答案

    void checkThread() {
        if (mThread != Thread.currentThread()) {
            throw new CalledFromWrongThreadException("Only the original thread that created a view hierarchy can touch its views.");
        }
    }
    

    ViewRootImpl 类中的 checkThread 方法会在更新 UI 前被执行,如果当前线程不是主线程,就会抛出 Only the original thread that created a view hierarchy can touch its views. 的异常

    ## 2.3)那么 Android 为什么要设计为只能在主线程中更新 UI 呢?

    • Android 在子线程中更新 UI 是不安全的,如果多个子线程同时修改一个控件的数据,后果是不可控的
    • 如果给 UI 更新机制加锁,会降低 UI 的访问效率,并且可能阻塞某些线程的执行

    # 3. Handler 的用法

    ## 3.1)在主线程中创建 Handler

    通常,我们在主线程中创建 Handler 的写法如下:

    private Handler handler = new Handler(){
        @Override
        public void handleMessage(Message msg) {
            super.handleMessage(msg);
        }
    };
    

    但这样写,系统会这样提示:

    This Handler class should be static or leaks might occur (anonymous android.os.Handler)
    这个Handler类应该是静态的,否则可能会发生泄漏
    

    出现这个警告但原因是,Handler 在 Activity 中作为一个匿名内部类来定义,它的内部持有来 Activity 的实例。当 Activity 被用户关闭时,因为 Handler 持有了 Activity 的引用,就造成了 Activity 无法被回收,从而导致了内存泄漏。

    因此,在这里推荐一种更加安全的写法:

    private static class MyHandler extends Handler{
        private WeakReference<Activity> weakReference;
        public MyHandler(Activity activity){
            weakReference = new WeakReference<>(activity);
        }
    
        @Override
        public void handleMessage(Message msg) {
            super.handleMessage(msg);
            switch (msg.what){
                    case 0:                     
                      Toast.makeText(weakReference.get(),Thread.currentThread().getName(),Toast.LENGTH_SHORT).show();
                      break;
                }
        }
    }
    
    private MyHandler handler = new MyHandler(this);
    

    通过静态内部类的方式实现一个 Handler,此时内部类并不持有外部类对象的应用,需要在内部类的构造方法内增加一个外部类(Activity)的弱应用。这样,即使 Activity 被关闭,Activity 也能顺利被回收。

    onCreate() 中的代码如下:

    btn_0 = findViewById(R.id.btn_0);
    btn_0.setOnClickListener(new View.OnClickListener() {
        @Override
        public void onClick(View v) {
            new Thread(){
                @Override
                public void run() {
                    super.run();
                    Message message = Message.obtain();
                    message.what = 0;
                    handler.sendMessage(message);
                }
            }.start();
        }
    });
    

    这时候点击按钮的运行效果如下:


    运行效果

    ## 3.2)在子线程中创建 Handler

    在官方文档中 Handler 的主要作用是在不同于当前线程的线程中执行操作,那么如何用 Handler 解决两个子线程之间的通信呢?

    请看代码:

    btn_1 = findViewById(R.id.btn_1);
    btn_1.setOnClickListener(new View.OnClickListener() {
        @Override
        public void onClick(View v) {
            new Thread(){
                @Override
                public void run() {
                    super.run();
                    Looper.prepare();
                    handler = new MyHandler(MainActivity.this);
                    try {
                        sleep(1000);
                    } catch (InterruptedException e) {
                        e.printStackTrace();
                    }
                    Looper.loop();
                }
            }.start();
            new Thread(){
                @Override
                public void run() {
                    super.run();
                    Message message = Message.obtain();
                    message.what = 0;
                    handler.sendMessage(message);
                }
            }.start();
         }
    });
    

    此时点击按钮:


    运行效果

    可见当前的处理线程已经变成了子线程。

    # 4. Handler 工作原理

    如果细心的观察代码,可以看到在子线程中创建 Handler 的时候调用了 Looper.prepare()Looper.loop() 两个方法。这两句代码有什么用呢?

    我们暂时可以把 Looper 理解为消息的管理者,它负责从 MessageQueue 中提取出消息,传递给 Handler 进行处理,每一个 Handler 都必须要有一个 Looper,在 Handler 创建的时候,它会自动使用当前线程的 Looper,而 Looper.prepare() 的作用就是为当前线程准备一个 Looper,Looper.loop() 的作用是开始查找当前 MessageQueue 中是否有了新的消息。

    这就是 Handler 工作的第一步 :

    ## 4.1)采用当前线程的 Looper 创建 Handler

    因为这里主要讲 Handler 的工作流程,创建 Looper 的具体过程放到文章的下面讲解。我们只要知道
    Looper.prepare() 为当前的线程创建了一个 Looper 对象即可。

    但是,在主线程中创建 Handler 的时候,我们并没有看到 Looper.prepare() 的执行,这是因为在 UI 线程,即 ActivityThread 的创建过程中,Looper 已经被创建好了。

    我们可以在 ActivityThread 的 main() 方法中看到这样一句代码:

    Looper.prepareMainLooper();
    

    这个方法内部也调用了 Looper.prepare() 为 UI 线程创建了一个 Looper。

    ## 4.2)通过 Handler 的 sendMessageAtTime() 方法发送 Message

    为什么是 sendMessageAtTime?不是还有 sendMessage()sendEmptyMessage()sendEmptyMessageDelayed()sendEmptyMessageAtTime()sendMessageDelayed() 这么多方法吗?

    通过阅读这些方法的源码可以发现,这些方法最终调用的都是 sendMessageAtTime()

    其次还有 post()postAtTime()postDelayed() 方法最终调用的也都是 sendMessageAtTime() 方法,只是多了一步调用 getPostMessage(Runnable r, Object token) 将 Runnable 封装为一个 Message 对象的 callback 里。

    public final boolean post(Runnable r){
       return  sendMessageDelayed(getPostMessage(r), 0);
    }
    
    private static Message getPostMessage(Runnable r) {
        Message m = Message.obtain();
        m.callback = r;
        return m;
    }
    

    那么 sendMessageAtTime() 里的具体操作是什么呢?我们去源码里一探究竟

    public boolean sendMessageAtTime(Message msg, long uptimeMillis) {
        // 先获取当前 Handler 中的 MessageQueue,mQueue 在 Looper 的构造方法中进行初始化。
        MessageQueue queue = mQueue;
        if (queue == null) {
            RuntimeException e = new RuntimeException(
                    this + " sendMessageAtTime() called with no mQueue");
            Log.w("Looper", e.getMessage(), e);
            return false;
        }
        // queue 不为空,则执行 Handler.java 里的另一个 enqueueMessage() 方法
        return enqueueMessage(queue, msg, uptimeMillis);
    }
    
        
    private boolean enqueueMessage(MessageQueue queue, Message msg, long uptimeMillis) {
        // 指定 msg 的 Target 对象为当前的 Handler
        msg.target = this;
        if (mAsynchronous) {
           msg.setAsynchronous(true);
        }
        return queue.enqueueMessage(msg, uptimeMillis);
    }
    在 enqueueMessage() 中,会最终调用 MessageQueue.java 中的 enqueueMessage() 方法。
    

    在 sendMessageAtTime() 方法内部 调用了 enqueueMessage() 方法,将 Message 对象传递到 MessageQueue 即消息队列里中,在消息队列里的具体处理逻辑在文章的 MessageQueue 工作原理 部分会具体解释。

    ## 4.3)Looper 处理消息后调用 Handler 的 dispatchMessage() 方法

    在第二步将消息插入消息队列后,Looper 就开始遍历消息队列,找到新的消息,再通知 Handler 去执行这条消息,调用的就是 Handler 的 dispatchMessage() 方法。

    public void dispatchMessage(Message msg) {
       // msg 的 callback 对象就是一个 Runnable
       if (msg.callback != null) {
            handleCallback(msg);
        } else {
            // 检查 mCallback 是否为空,不为空就执行它内部定义的 handleMessage() 方法
            if (mCallback != null) {
                if (mCallback.handleMessage(msg)) {
                    return;
                }
            }
            // 如果 mCallback 为空,就执行在实例化 Handler 过程中我们自己定义的 handleMessage() 方法中的内容
            handleMessage(msg);
        }
    }
    

    dispatchMessage() 方法首先会检查 Message 的 Callback 对象是否为空,callback 就是通过 post() 方法传递的 Runnable 对象,如果 callback 不为空,就去执行 handleCallback() 方法。

    handleCallback() 方法的实现也很简单,它在内部执行了 Runnable 的 run() 方法

    private static void handleCallback(Message message) {
        message.callback.run();
    }
    

    如果 callback 对象为空,就检查 mCallback 是否为空,不为空就执行它的定义的 handleMessage() 方法,若没有 mCallback,最终将直接执行我们在继承 Handler 时自己定义的 handleMessage() 方法中的代码。

    Callback 是 Handler 中定义的的一个接口,它的代码如下:

    /**
     * Callback interface you can use when instantiating a Handler to avoid
     * having to implement your own subclass of Handler.
     */
    public interface Callback {
        /**
         * @param msg A {@link android.os.Message Message} object
         * @return True if no further handling is desired
         */
        public boolean handleMessage(Message msg);
    }
    

    如果使用 Callback 接口的话,我们可以直接实例化一个 Handler 而不用去实现一个 Handler 的子类,

    private Handler mHandler = new Handler(new Handler.Callback() {
        @Override
        public boolean handleMessage(Message msg) {
            return false;
        }
    });
    

    # 5. MessageQueue 工作原理

    我们从上一部分的 MessageQueue.java 中的 enqueueMessage() 方法开始入手。

    ## 5.1)enqueueMessage()

    代码量有点多,要耐心看哦!

    boolean enqueueMessage(Message msg, long when) {
        // 检查当前 msg 的 target 是否为空
        if (msg.target == null) {
            throw new IllegalArgumentException("Message must have a target.");
        }
        // msg 如果正在被执行,就抛出异常
        if (msg.isInUse()) {
            throw new IllegalStateException(msg + " This message is already in use.");
        }
    
        synchronized (this) {
            // 在 quit() 方法中,mQuitting 会被设置为 true
            if (mQuitting) {
                IllegalStateException e = new IllegalStateException(
                        msg.target + " sending message to a Handler on a dead thread");
                Log.w(TAG, e.getMessage(), e);
                msg.recycle();
                return false;
            }
    
            // 标记当前的 msg 正在执行
            msg.markInUse();
            // 设置 msg 的 when 为传进来的 when 参数,when 是 Message 想要被执行的时间
            msg.when = when;
            // 得到当前消息队列的头部消息
            Message p = mMessages;
            boolean needWake;
            // 当前消息队列为空,新消息的触发时间为 0,或者新消息的触发时间早于消息中第一条消息的触发时间
            // 则将新消息插入到队列的头部,作为当前消息队列的第一条消息
            if (p == null || when == 0 || when < p.when) {
                // New head, wake up the event queue if blocked.
                // 将当前消息的下一条消息指向头部消息
                msg.next = p;
                // 头部消息修改为当前消息
                mMessages = msg;
                // 当阻塞时,需要唤醒
                needWake = mBlocked;
            } else {
                // 将新消息插入到当前消息队列当中,(不是头部)
                // 通常我们不必唤醒事件队列,
                // 除非队列头部有消息障碍,并且消息是队列中最早的异步消息。
                needWake = mBlocked && p.target == null && msg.isAsynchronous();
                Message prev;
                // 开始循环便利消息队列,比较新消息和队列中消息的 when(触发事件)的值,将新消息插入到适当位置
                for (;;) {
                    // 循环第一次遍历时,将当前队列中的头部消息赋值给 prev
                    prev = p;
                    // p 指向队列中的第二个消息
                    p = p.next;
                    // 如果下一个消息为空,或者新消息的触发时间早于下一个消息,找到了要插入的位置,退出循环
                    if (p == null || when < p.when) {
                        break;
                    }
                    // needWake 为 true,并且 下一条消息是异步的,则不需要唤醒。
                    if (needWake && p.isAsynchronous()) {
                        needWake = false;
                    }
                }
                // 将新消息插入到 p 之前,头消息之后。
                msg.next = p; // invariant: p == prev.next
                prev.next = msg;
            }
    
            // 如果需要唤醒,调用 nativeWake 方法去唤醒
            if (needWake) {
                nativeWake(mPtr);
            }
        }
        return true;
    }
    

    执行完 enqueueMassage 方法,我们新发送的 Message 就成功的插入了消息队列当中。
    但是除了插入新消息,我们还需要从消息队列中读取消息,这又要怎么做呢?

    ## 5.2)next()

    Message next() {
        // 如果消息循环已退出,并且被丢弃,则返回空。
        // 这个将在应用重启一个 looper 时发生
        final long ptr = mPtr;
        if (ptr == 0) {
            return null;
        }
    
        // 记录空闲时处理的 IdlerHandler 数量,只在第一次迭代时为 -1
        // IdleHandler 只在队列为空 或者 是头部消息时执行
        int pendingIdleHandlerCount = -1;
        //  native 层使用的变量,设置的阻塞超时时长,0 为不阻塞,-1 为阻塞
        int nextPollTimeoutMillis = 0;
        for (;;) {
            if (nextPollTimeoutMillis != 0) {
                Binder.flushPendingCommands();
            }
    
            nativePollOnce(ptr, nextPollTimeoutMillis);
      
            // 尝试检索下一条消息。 如果找到则返回。
            synchronized (this) {
                // 获取系统从开机到现在到时间
                final long now = SystemClock.uptimeMillis();
                Message prevMsg = null;
                // 将队列中到头部消息赋值给 msg
                Message msg = mMessages;
                if (msg != null && msg.target == null) {
                    // msg 不为空,但是这个 msg 没有 handler,则这个 msg 为栅栏
                    // 开始遍历,指到获取第一个异步消息
                    do {
                        prevMsg = msg;
                        msg = msg.next;
                    } while (msg != null && !msg.isAsynchronous());
                }
                if (msg != null) {
                    // 如果当前时间不到 msg 的触发时间,则计算时间差,设置阻塞超时时长
                    if (now < msg.when) {
                        // Next message is not ready.  Set a timeout to wake up when it is ready.
                        nextPollTimeoutMillis = (int) Math.min(msg.when - now, Integer.MAX_VALUE);
                    } else {
                        // 当前时间到了 msg 的触发时间,则获取消息并返回
                        mBlocked = false;
                        // 如果当前的 msg 不是头部消息,则上一条消息的 next 指向 msg 的 next
                        if (prevMsg != null) {
                            prevMsg.next = msg.next;
                        } else {
                            // 当前 msg 为头部消息,则将下一个 msg 设置为头部消息
                            mMessages = msg.next;
                        }
                        // msg 的下一个 Message 对象置空,表示从消息队列中取出来了这条 msg
                        msg.next = null;
                        if (DEBUG) Log.v(TAG, "Returning message: " + msg);
                        // 标记 msg 正在使用
                        msg.markInUse();
                        return msg;
                    }
                } else {
                    // 如果没有消息,则设置阻塞时长为 -1,直到被唤醒
                    nextPollTimeoutMillis = -1;
                }
    
                // 所有的消息都被处理后,判断是否退出,并返回 null。
                if (mQuitting) {
                    dispose();
                    return null;
                }
    
                // If first time idle, then get the number of idlers to run.
                // Idle handles only run if the queue is empty or if the first message
                // in the queue (possibly a barrier) is due to be handled in the future.
                // 第一次循环时,消息队列为空,或 当前时间未到消息的触发时间,获取 IdleHandler 的数量
                if (pendingIdleHandlerCount < 0
                        && (mMessages == null || now < mMessages.when)) {
                    pendingIdleHandlerCount = mIdleHandlers.size();
                }
      
                // pendingIdleHandlerCount 的数量为 0 时,线程会继续堵塞
                if (pendingIdleHandlerCount <= 0) {
                    // No idle handlers to run.  Loop and wait some more.
                    mBlocked = true;
                    continue;
                }
    
                // 判断当前空闲时处理任务的handler是否是为空,如果为空,就实例化出新的对象
                if (mPendingIdleHandlers == null) {
                    mPendingIdleHandlers = new IdleHandler[Math.max(pendingIdleHandlerCount, 4)];
                }
                mPendingIdleHandlers = mIdleHandlers.toArray(mPendingIdleHandlers);
            }
    
            // 运行 IdleHandler,只有第一次循环时才会运行
            for (int i = 0; i < pendingIdleHandlerCount; i++) {
                final IdleHandler idler = mPendingIdleHandlers[i];
                // 释放 IdleHandler 的引用
                mPendingIdleHandlers[i] = null;
    
                boolean keep = false;
                try {
                    // 执行 IdleHandler 的方法
                    keep = idler.queueIdle();
                } catch (Throwable t) {
                    Log.wtf(TAG, "IdleHandler threw exception", t);
                }
    
                if (!keep) {
                    synchronized (this) {
                        mIdleHandlers.remove(idler);
                    }
                }
            }
    
            // 重置 IdleHandler 的数量为 0,确保不会重复运行它们
            pendingIdleHandlerCount = 0;
    
            // 在执行 IdleHandler 时,一个新的消息可能插入或消息队列中的消息到了触发时间
            // 所以将 nextPollTimeoutMillis 设为 0,表示不需要阻塞,重新检查消息队列。
            nextPollTimeoutMillis = 0;
        }
    }
    

    至此,MessageQueue 的两个最重要的方法已经分析完了,下面来看 Looper 如何循环地从消息队列中取出消息。

    # 6. Looper 工作原理

    在讲 Looper 之前,需要先理解 ThreadLocal 的工作原理

    ## 6.1)ThreadLocal 的工作原理

    ThreadLocal 是一个线程内存储数据的类,当不同的线程去访问同一个 ThreadLocal 对象时,获得的值都是不一样的,下面用一段代码来证明

    private ThreadLocal<String> mThreadLocal = new ThreadLocal<>();
    
    btn_1 = findViewById(R.id.btn_1);
    btn_1.setOnClickListener(new View.OnClickListener() {
        @Override
        public void onClick(View v) {
            new Thread(){
                @Override
                public void run() {
                    super.run();
                    mThreadLocal.set("Thread_A");
                    Log.d("ThreadLocalValue",mThreadLocal.get());
                }
            }.start();
            new Thread(){
                @Override
                public void run() {
                    super.run();
                    mThreadLocal.set("Thread_B");
                    Log.d("ThreadLocalValue",mThreadLocal.get());
                }
            }.start();        
        }
    );
    

    我在两个线程中分别存入在 mThreadLocal 中存入了不同的值,然后在控制台输出它们的内容

    不同线程访问 ThreadLocal 对象

    可见不同线程访问同一个 ThreadLocal 对象得到的值也是不一样的。

    ThreadLocal 实现这种特性的原因也很简单,下面来看它内部的 set 方法:

    public void set(T value) {
        // 获取当前线程 t
        Thread t = Thread.currentThread();
        // 根据当前线程 t,获取当前线程的 ThreadLocalMap 对象
        ThreadLocalMap map = getMap(t);
        if (map != null)
            // map 不为空,调用 ThreadLocalMap 的 set() 方法。
            map.set(this, value);
        else
            // map 为空,则为当前线程创建一个新的 ThreadLocalMap 对象
            createMap(t, value);
    }
    

    在 set 方法中,先获取当前线程,然后获取当前线程的 ThreadLocalMap 对象。getMap() 的 和 createMap() 的实现如下:

    ThreadLocalMap getMap(Thread t) {
        return t.threadLocals;
    }
    
    void createMap(Thread t, T firstValue) {
        t.threadLocals = new ThreadLocalMap(this, firstValue);
    }
    

    那么 ThreadLocalMap 又是什么呢,这里是它的一部分源码:

    static class ThreadLocalMap {
        static class Entry extends WeakReference<ThreadLocal<?>> {
            /** The value associated with this ThreadLocal. */
            Object value;
    
            Entry(ThreadLocal<?> k, Object v) {
                super(k);
                value = v;
            }
        }
    
        // 初始的 table 容量
        private static final int INITIAL_CAPACITY = 16;
      
        // Entry 数组用于存储数据
        private Entry[] table;
    
        // table 的大小
        private int size = 0;
    
        // 负载因子,用于扩容
        private int threshold; // Default to 0
    
        // 设置负载因子为当然容量大小的 2 / 3 
        private void setThreshold(int len) {
            threshold = len * 2 / 3;
        }
      
        // 初始化 Entry 数组
        ThreadLocalMap(ThreadLocal<?> firstKey, Object firstValue) {
            table = new Entry[INITIAL_CAPACITY];
            int i = firstKey.threadLocalHashCode & (INITIAL_CAPACITY - 1);
            table[i] = new Entry(firstKey, firstValue);
            size = 1;
            setThreshold(INITIAL_CAPACITY);
        }
    }
    

    可以将 ThreadLocalMap 当作一个哈希表,它的内部用 Entry 存储相应的数据。

    在 Thread 的属性中有 ThreadLocal.ThreadLocalMap threadLocals = null;,所以每一个线程内部,都持有一个 ThreadLocalMap 对象,系统才可以通过 getMap() 方法获取当前线程的 ThreadLocalMap 对象。

    在 ThreadLocal 中调用 set 方法,实际上会调用 ThreadLocalMap 中的 set 方法,源码如下:

    // ThreadLocalMap 的 set 方法
    private void set(ThreadLocal<?> key, Object value) {
    
        // We don't use a fast path as with get() because it is at
        // least as common to use set() to create new entries as
        // it is to replace existing ones, in which case, a fast
        // path would fail more often than not.
    
        // 首先获取当前 ThreadLocal 对象的 table 属性,table 一个 Entry 的数组
        // Entry 相当于一个 HashMap,存储了当前 ThreadLocal 对象和 Object 类型的 value 对象
        Entry[] tab = table;
        int len = tab.length;
        // 计算出存储的位置
        int i = key.threadLocalHashCode & (len-1);
    
        // 遍历 tab
        for (Entry e = tab[i];
            e != null;
            e = tab[i = nextIndex(i, len)]) {
            ThreadLocal<?> k = e.get();
            // 如果 tab 中已经存在了相同的 key 值,就覆盖它原有的 value
            if (k == key) {
                e.value = value;
                return;
            }
            // 如果 当前 entrt 的 key 为 null,调用 replaceStaleEntry 方法清楚所有 key 为 null 的数据
            if (k == null) {
                replaceStaleEntry(key, value, i);
                return;
            }
        }
            // 都不满足,就新建一个 Entry 对象
        tab[i] = new Entry(key, value);
        int sz = ++size;
        // ThreadLocalMap 的容量到达阀值后扩容
        if (!cleanSomeSlots(i, sz) && sz >= threshold)
            rehash();
    }
    

    ThreadLocal 中的 get() 方法和 set() 方法一样,都是对 Thread 中对 ThreadLocalMap 进行操作

    public T get() {
        // 获取当前线程
        Thread t = Thread.currentThread();
        // 获取当前线程的 ThreadLocalMap 对象
        ThreadLocalMap map = getMap(t);
        if (map != null) {
            // 获取 ThreadLocalMap 中对应当前线程的 Entry 对象
            ThreadLocalMap.Entry e = map.getEntry(this);
            if (e != null) {
                @SuppressWarnings("unchecked")
                // 将 Entry 对象中的 value 取出来
                T result = (T)e.value;
                return result;
            }
        }
        return setInitialValue();
    }
    
    private Entry getEntry(ThreadLocal<?> key) {
        int i = key.threadLocalHashCode & (table.length - 1);
        Entry e = table[i];
        if (e != null && e.get() == key)
            return e;
        else
            return getEntryAfterMiss(key, i, e);
    }
    

    ## 6.2)Looper 中的 prepare() 方法

    那么 ThreadLocal 和 Looper 有什么关系呢?我们知道每一个线程都有自己的 Looper,Looper 的作用域就是当前的线程,Android 系统中便通过 ThreadLocal 对象来存储不同线程中的 Looper。

    Looper 中 prepare() 方法为当前线程创建一个 Looper 对象,我们看一下它的实现:

    public static void prepare() {
        prepare(true);
    }
    
    private static void prepare(boolean quitAllowed) {
        if (sThreadLocal.get() != null) {
            throw new RuntimeException("Only one Looper may be created per thread");
        }
        // 将 Looper 对象保存到当前线程的 ThreadLocalMap 当中
        sThreadLocal.set(new Looper(quitAllowed));
    }
    

    这里再看一下 Looper 的构造方法

    private Looper(boolean quitAllowed) {
        mQueue = new MessageQueue(quitAllowed);
        mThread = Thread.currentThread();
    }
    

    可以看到在一个 Looper 中创建了一个 MessageQueue,这里我们就可以搞清楚 Handler、Looper 和 MessageQueue 的对应关系了:

    每个线程都有一个 Looper 对象,在 Looper 对象的初始化过程中,会为当前线程创建一个 MessageQueue,而一个线程中可以有多个 Handler。

    ## 6.3)Looper 中的 loop() 方法:

    prepare() 调用后,就是调用 loop() 方法:

    /**
      * Run the message queue in this thread. Be sure to call
      * {@link #quit()} to end the loop.
      */
    public static void loop() {
        // 通过 Thread Local 获取当前线程的 Looper
        final Looper me = myLooper();
        if (me == null) {
            throw new RuntimeException("No Looper; Looper.prepare() wasn't called on this thread.");
        }
        // 获取当前 Looper 对象的 MessageQueue
        final MessageQueue queue = me.mQueue;
    
        // 清空远程调用端进程的身份,确保此线程的身份是本地进程的身份,并跟踪该身份令牌
        // 这里主要用于保证消息处理是发生在当前 Looper 所在的线程
        Binder.clearCallingIdentity();
        final long ident = Binder.clearCallingIdentity();
    
        for (;;) {
            // 取出来下一条消息
            Message msg = queue.next(); // might block
            if (msg == null) {
                // No message indicates that the message queue is quitting.
                return;
            }
            
            // 用 logging 打印日志,默认为 null,可通过 setMessageLogging() 方法来指定
            final Printer logging = me.mLogging;
            if (logging != null) {
                logging.println(">>>>> Dispatching to " + msg.target + " " +
                        msg.callback + ": " + msg.what);
            }
            
            // 开始跟踪,并写入跟踪消息,用于 debug 功能
            final long traceTag = me.mTraceTag;
            if (traceTag != 0 && Trace.isTagEnabled(traceTag)) {
                Trace.traceBegin(traceTag, msg.target.getTraceName(msg));
            }        
            ...
            ...
            try {
                // // 通过 Handler 分发消息
                msg.target.dispatchMessage(msg);
                dispatchEnd = needEndTime ? SystemClock.uptimeMillis() : 0;
            } finally {
                if (traceTag != 0) {
                    // 停止跟踪
                    Trace.traceEnd(traceTag);
                }
            }
            
            if (logSlowDispatch) {
                showSlowLog(slowDispatchThresholdMs, dispatchStart, dispatchEnd, "dispatch", msg);
            }
    
            if (logging != null) {
                logging.println("<<<<< Finished to " + msg.target + " " + msg.callback);
            }
    
            //  确保在分发消息的过程中线程的身份没有改变
            final long newIdent = Binder.clearCallingIdentity();
            if (ident != newIdent) {
                Log.wtf(TAG, "Thread identity changed from 0x"
                        + Long.toHexString(ident) + " to 0x"
                        + Long.toHexString(newIdent) + " while dispatching to "
                        + msg.target.getClass().getName() + " "
                        + msg.callback + " what=" + msg.what);
            }
            // 回收消息,并把消息放入消息池
            msg.recycleUnchecked();
        }
    }
    

    可以看到 loop() 方法就是不停的遍历消息队列中的消息,当发现有新的消息时,便调用 Handler 的 dispatchMessage() 方法。

    ## 6.4)getMainLooper()

    public static void prepareMainLooper() {
        prepare(false);
        synchronized (Looper.class) {
            if (sMainLooper != null) {
                throw new IllegalStateException("The main Looper has already been prepared.");
            }
            sMainLooper = myLooper();
        }
    }
      /**
        * Returns the application's main looper, which lives in the main thread of the application.
        */
    public static Looper getMainLooper() {
        synchronized (Looper.class) {
            return sMainLooper;
        }
    }
    

    getMainLooper() 方法用于返回当前 UI 线程的 Looper,UI 线程的 Looper 在 ActivityThread 的建立时通过调用
    prepareMainLooper() 方法创建。

    ## 6.5)quit() 和 quitSafely()

    在子线程中,如果手动为其创建了Looper,那么在所有消息处理完成之后应该调用 quit() 方法终止消息循环,不然 Looper 就会一直处于等待状态。

    public void quitSafely() {
        mQueue.quit(true);
    }
    
    public void quit() {
        mQueue.quit(false);
    }
    

    可以看到这两个方法都调用了 MessageQueue 中都 quit(boolean safe) 方法,quitSafely 的参数为 true,quit 的参数为 false。

    void quit(boolean safe) {
        // 主线程不退出消息循环
        if (!mQuitAllowed) {
            throw new IllegalStateException("Main thread not allowed to quit.");
        }
        synchronized (this) {
            // 如果已经退出了,直接 return
            if (mQuitting) {
                return;
            }
    
            // 标记为已经退出
            mQuitting = true;
            // 如果 safe 的值为 true,执行完当前的消息后退出消息循环
            if (safe) {
                removeAllFutureMessagesLocked();
            } else {
                // 直接退出消息循环
                removeAllMessagesLocked();
            }
            // We can assume mPtr != 0 because mQuitting was previously false.
            nativeWake(mPtr);
        }
    }
    

    quitSafely() 会等待当前消息执行完毕后退出消息循环,而 quit() 方法会直接退出消息循环。

    private void removeAllMessagesLocked() {
        // 获取当前 MessageQueue 的头部消息
        Message p = mMessages;
        while (p != null) {
            // 循环遍历所有的 Message
            Message n = p.next;
            // 回收消息,并把消息放入消息池
            p.recycleUnchecked();
            p = n;
        }
        // 将头部消息置为空
        mMessages = null;
    }
    
    private void removeAllFutureMessagesLocked() {
        // 获取系统从开机到现在到时间
        final long now = SystemClock.uptimeMillis();
        // 将当前的头部消息赋值给 p
        Message p = mMessages;
        if (p != null) {
            if (p.when > now) {
                // 如果当前头部消息将要执行的时间大于系统开机到现在的时间,则执行 removeAllMessagesLocked() 方法
                // 清空 MessageQueue 队列
                removeAllMessagesLocked();
            } else {
                Message n;
                // 遍历当前的 MessageQueue,直到某个消息的执行时间小于 now 值(即这个消息正在执行)
                // 将这个消息的 next 赋值为 null
                for (;;) {
                    n = p.next;
                    if (n == null) {
                        return;
                    }
                    if (n.when > now) {
                        break;
                    }
                    p = n;
                }
                p.next = null;
                // 回收不会被执行的 Message
                do {
                    p = n;
                    n = p.next;
                    p.recycleUnchecked();
                } while (n != null);
            }
        }
    }
    

    终于讲完了,希望大家能通过我的文章,彻底理解 Handler 的机制,但我的能力有限,如果存在错误的地方,还请指出。

    零碎的东西很多,为了方便大家记忆,我把上面的内容做成了思维导图,需要的朋友可以保存下来,偶尔看一下,帮助自己记忆。

    Android 消息机制

    欢迎关注本文作者:

    扫码关注并回复「干货」,获取我整理的千G Android、iOS、JavaWeb、大数据、人工智能等学习资源。

    相关文章

      网友评论

        本文标题:Android 复盘——帮你彻底了解消息机制

        本文链接:https://www.haomeiwen.com/subject/mxrsgqtx.html