二、Android的消息机制
Android的消息机制主要说的是Handler的运行机制,Handler的运行需要MessageQueue和Looper,MessageQueue就是消息队列,它是采用单链表的数据结构来存储消息列表。而Looper会不断的查看MessageQueue中是否有消息,当有消息的时候就取出来。Hanlder在创建的时候会采用当前线程的Looper来构造消息循环系统,但是默认的线程是没有Looper的,比如我们在子线程创建一个Hanlder(这里只是便于演示所以不采用线程池了,建议标准开发中使用线程池)
/**
* 子线程使用Hanlder测试方法
*/
private void ThreadHandlerTest() {
new Thread(new Runnable() {
@Override
public void run() {
Handler handler = new Handler();
}
}).start();
}
运行结果报错如下:
java.lang.RuntimeException: Can't create handler inside thread Thread[Thread-2,5,main] that has not called Looper.prepare()
at android.os.Handler.<init>(Handler.java:206)
at android.os.Handler.<init>(Handler.java:119)
at lonbon.com.hanlderlooperdemo.MainActivity$1.run(MainActivity.java:24)
at java.lang.Thread.run(Thread.java:764)
这只因为默认的线程中没有Looper,所以我们要为当前线程创建Looper对象:
Looper.prepare();
Handler handler = new Handler();
Looper.loop();
我们通过Looper.prepare()方法创建Looper对象,.loop()方法开启消息循环。关于looper详细的下面讲解。
那么我们可能有疑问了,我们在主线程中使用Handler的时候没有创建looper对象也可以正常使用,那是因为默认的UI线程创建的时候默认创建了looper对象。
创建完Handler之后,通过handler的send或者post方法发送消息,这个消息会被存储到消息队列,Looper发现消息队列中有新的消息便会处理这个消息,然后handlermessage方法或者Runable方法会被调用,大致过程如图所示。
三、ThreadLocal
ThreadLocal是Looper中的特殊概念,用来在当前线程中存储数据,我们获取当前线程的Looper也是通过ThreadLocal操作的,当然,日常开发中我们能使用的ThreadLocal的地方并不多。比如我们在两个不同线程中进行如下操作:
首先我们声明一个String类型的ThreadLocal变量,创建两个线程分别使用set方法赋值,然后打印。
private ThreadLocal<String> threadLocal = new ThreadLocal<>();
/**
* 测试线程1
*/
private void ThreadTest1() {
new Thread(new Runnable() {
@Override
public void run() {
threadLocal.set("BigYellow");
Log.d(TAG,threadLocal.get());
}
}).start();
}
/**
* 测试线程2
*/
private void ThreadTest2() {
new Thread(new Runnable() {
@Override
public void run() {
threadLocal.set("大黄");
Log.d(TAG,threadLocal.get());
}
}).start();
}
运行打印,日志如下:
02-12 10:21:37.961 11719-12135/? D/TAG: BigYellow
02-12 10:21:37.966 11719-12136/? D/TAG: 大黄
我们可以看到取出的分别是各自线程对应的值,如果我们在主线程中呢?显然是null因为我们没有在主线程中存值。
接下来我们从源码的角度来分析ThreadLocal的存取值过程,首先我们看set方法。
public void set(T value) {
Thread t = Thread.currentThread();
ThreadLocalMap map = getMap(t);
if (map != null)
map.set(this, value);
else
createMap(t, value);
}
首先通过getMap方法获取当前线程的ThreadLocalMap,如果map不为空就通过map的set方法将值存储,如果为空则创建map,
我们来看下ThreadLocalMap,ThreadLocalMap是一个存储当前线程数据的Map集合,set方法源码如下所示:
private void set(ThreadLocal<?> key, Object value) {
// We don't use a fast path as with get() because it is at
// least as common to use set() to create new entries as
// it is to replace existing ones, in which case, a fast
// path would fail more often than not.
Entry[] tab = table;
int len = tab.length;
int i = key.threadLocalHashCode & (len-1);
for (Entry e = tab[i];
e != null;
e = tab[i = nextIndex(i, len)]) {
ThreadLocal<?> k = e.get();
if (k == key) {
e.value = value;
return;
}
if (k == null) {
replaceStaleEntry(key, value, i);
return;
}
}
tab[i] = new Entry(key, value);
int sz = ++size;
if (!cleanSomeSlots(i, sz) && sz >= threshold)
rehash();
}
首先定义了一个Entry类型的数组,我们主要来看for循环中的操作,for循环主要做的就是为插入值得位置找到合适的位置,通过不断到table数组中去寻找,直到存放的entry为null
if (k == key) {
e.value = value;
return;
}
如果key的值相同说明该线程曾经设置过Threadlocal,直接赋值即可。
if (k == null) {
replaceStaleEntry(key, value, i);
return;
}
Entry继承的是WeakReference,这是弱引用带来的坑
所以要判断是否为null,如果为null就进行置换操作,即
replaceStaleEntry(key, value, i);
private void replaceStaleEntry(ThreadLocal<?> key, Object value,
int staleSlot) {
Entry[] tab = table;
int len = tab.length;
Entry e;
// Back up to check for prior stale entry in current run.
// We clean out whole runs at a time to avoid continual
// incremental rehashing due to garbage collector freeing
// up refs in bunches (i.e., whenever the collector runs).
int slotToExpunge = staleSlot;
for (int i = prevIndex(staleSlot, len);
(e = tab[i]) != null;
i = prevIndex(i, len))
if (e.get() == null)
slotToExpunge = i;
// Find either the key or trailing null slot of run, whichever
// occurs first
for (int i = nextIndex(staleSlot, len);
(e = tab[i]) != null;
i = nextIndex(i, len)) {
ThreadLocal<?> k = e.get();
// If we find key, then we need to swap it
// with the stale entry to maintain hash table order.
// The newly stale slot, or any other stale slot
// encountered above it, can then be sent to expungeStaleEntry
// to remove or rehash all of the other entries in run.
if (k == key) {
e.value = value;
tab[i] = tab[staleSlot];
tab[staleSlot] = e;
// Start expunge at preceding stale entry if it exists
if (slotToExpunge == staleSlot)
slotToExpunge = i;
cleanSomeSlots(expungeStaleEntry(slotToExpunge), len);
return;
}
// If we didn't find stale entry on backward scan, the
// first stale entry seen while scanning for key is the
// first still present in the run.
if (k == null && slotToExpunge == staleSlot)
slotToExpunge = i;
}
// If key not found, put new entry in stale slot
tab[staleSlot].value = null;
tab[staleSlot] = new Entry(key, value);
// If there are any other stale entries in run, expunge them
if (slotToExpunge != staleSlot)
cleanSomeSlots(expungeStaleEntry(slotToExpunge), len);
}
当table数组中存储的ThreadLocal对应的值还在但是key不存在了,就认为Entry过期了,
int slotToExpunge = staleSlot;
for (int i = prevIndex(staleSlot, len);
(e = tab[i]) != null;
i = prevIndex(i, len))
if (e.get() == null)
slotToExpunge = i;
上述代码检查脏数据,清理整个table,否则会因为GC问题导致很严重的后果。
if (k == key) {
e.value = value;
tab[i] = tab[staleSlot];
tab[staleSlot] = e;
// Start expunge at preceding stale entry if it exists
if (slotToExpunge == staleSlot)
slotToExpunge = i;
cleanSomeSlots(expungeStaleEntry(slotToExpunge), len);
return;
}
如果找到key了我们需要进行替换,将过期数据进行删除刷新。源代码中注释的很清楚了,这里就不一一解释了。
个人感觉和之前早期版本(6.0之前)的set方法变化很大。
我们接下来来看ThreadLocal的get方法,首先同样的获取当前线程的ThreadLocalMap,获取map的entry对象,如果不为空的话就从中取值即可。如果map为空就回到setInitialValue初始化方法.
public T get() {
Thread t = Thread.currentThread();
ThreadLocalMap map = getMap(t);
if (map != null) {
ThreadLocalMap.Entry e = map.getEntry(this);
if (e != null) {
@SuppressWarnings("unchecked")
T result = (T)e.value;
return result;
}
}
return setInitialValue();
}
四、Looper
Looper我们上面说了是用来构建消息循环系统,我们通过ThreadLocal来获取当前线程的Looper对象.我们上面也说到了如何在子线程中创建looper,通过Looper的prepare方法为当前线程创建一个looper,通过loop方法开启消息循环。在主线程中创建Looper是通过
Looper.prepareMainLooper();
方法,因为UI线程的Looper比较特殊是默认创建好的,所以我们可以通过下列代码来获取主线程的looper
Looper.getMainLooper();
我们可以开启looper肯定也可以关闭looper,关闭looper有这个方法,一个是
getMainLooper().quit();
public void quit() {
mQueue.quit(false);
}
quit方法会直接退出looper,另一种方法是
getMainLooper().quitSafely();
和quit方法不同的是quitSafely方法调用后在消息队列中的消息处理完成之后在退出,就像方法名一样是安全退出。所以如果我们在子线程中手动创建了looper,记得在执行完线程后调用退出方法,否则子线程会一直处于等待状态,影响性能。
接下来我们看looper是如何通过loop方法开启消息循环的,loop方法源码如下所示:
/**
* Run the message queue in this thread. Be sure to call
* {@link #quit()} to end the loop.
*/
public static void loop() {
final Looper me = myLooper();
if (me == null) {
throw new RuntimeException("No Looper; Looper.prepare() wasn't called on this thread.");
}
final MessageQueue queue = me.mQueue;
// Make sure the identity of this thread is that of the local process,
// and keep track of what that identity token actually is.
Binder.clearCallingIdentity();
final long ident = Binder.clearCallingIdentity();
for (;;) {
Message msg = queue.next(); // might block
if (msg == null) {
// No message indicates that the message queue is quitting.
return;
}
// This must be in a local variable, in case a UI event sets the logger
final Printer logging = me.mLogging;
if (logging != null) {
logging.println(">>>>> Dispatching to " + msg.target + " " +
msg.callback + ": " + msg.what);
}
final long slowDispatchThresholdMs = me.mSlowDispatchThresholdMs;
final long traceTag = me.mTraceTag;
if (traceTag != 0 && Trace.isTagEnabled(traceTag)) {
Trace.traceBegin(traceTag, msg.target.getTraceName(msg));
}
final long start = (slowDispatchThresholdMs == 0) ? 0 : SystemClock.uptimeMillis();
final long end;
try {
msg.target.dispatchMessage(msg);
end = (slowDispatchThresholdMs == 0) ? 0 : SystemClock.uptimeMillis();
} finally {
if (traceTag != 0) {
Trace.traceEnd(traceTag);
}
}
if (slowDispatchThresholdMs > 0) {
final long time = end - start;
if (time > slowDispatchThresholdMs) {
Slog.w(TAG, "Dispatch took " + time + "ms on "
+ Thread.currentThread().getName() + ", h=" +
msg.target + " cb=" + msg.callback + " msg=" + msg.what);
}
}
if (logging != null) {
logging.println("<<<<< Finished to " + msg.target + " " + msg.callback);
}
// Make sure that during the course of dispatching the
// identity of the thread wasn't corrupted.
final long newIdent = Binder.clearCallingIdentity();
if (ident != newIdent) {
Log.wtf(TAG, "Thread identity changed from 0x"
+ Long.toHexString(ident) + " to 0x"
+ Long.toHexString(newIdent) + " while dispatching to "
+ msg.target.getClass().getName() + " "
+ msg.callback + " what=" + msg.what);
}
msg.recycleUnchecked();
}
}
从中我们可以看到looper会不断的调用
queue.next()
方法从消息队列中取出消息,如果为空就一直等待,如果有消息就调用
msg.target.dispatchMessage(msg);
方法处理msg.target就是发送这条消息的Handler对象,而handler的dispatchMessage方法又是在创建Handler所在的Looper执行的,所以这样就将消息交给指定的线程去处理了。
五、消息队列MessageQueue与Handler
消息队列MessageQueue主要有插入和读取两个操作,读取成功后也就相当于删除。
插入方法对应的enqueueMessage源码如下:
boolean enqueueMessage(Message msg, long when) {
if (msg.target == null) {
throw new IllegalArgumentException("Message must have a target.");
}
if (msg.isInUse()) {
throw new IllegalStateException(msg + " This message is already in use.");
}
synchronized (this) {
if (mQuitting) {
IllegalStateException e = new IllegalStateException(
msg.target + " sending message to a Handler on a dead thread");
Log.w(TAG, e.getMessage(), e);
msg.recycle();
return false;
}
msg.markInUse();
msg.when = when;
Message p = mMessages;
boolean needWake;
if (p == null || when == 0 || when < p.when) {
// New head, wake up the event queue if blocked.
msg.next = p;
mMessages = msg;
needWake = mBlocked;
} else {
// Inserted within the middle of the queue. Usually we don't have to wake
// up the event queue unless there is a barrier at the head of the queue
// and the message is the earliest asynchronous message in the queue.
needWake = mBlocked && p.target == null && msg.isAsynchronous();
Message prev;
for (;;) {
prev = p;
p = p.next;
if (p == null || when < p.when) {
break;
}
if (needWake && p.isAsynchronous()) {
needWake = false;
}
}
msg.next = p; // invariant: p == prev.next
prev.next = msg;
}
// We can assume mPtr != 0 because mQuitting is false.
if (needWake) {
nativeWake(mPtr);
}
}
return true;
}
我们上面也说了消息队列其实是一个单链表,所以就相当于单链表的插入操作。读取方法是next方法,读取后将消息移除,这里就不作过多解释了。
而我们日常开发中最常用的就是创建Hanlder的匿名内部类方式(这种方式记得处理内存泄漏),然后通过hanlder.send方法发送消息,而send方法最终又会调用sendMessageAtTime方法,源码如下:
public boolean sendMessageAtTime(Message msg, long uptimeMillis) {
MessageQueue queue = mQueue;
if (queue == null) {
RuntimeException e = new RuntimeException(
this + " sendMessageAtTime() called with no mQueue");
Log.w("Looper", e.getMessage(), e);
return false;
}
return enqueueMessage(queue, msg, uptimeMillis);
}
我们看最终返回值就可以看到其实调用handler的send方法就是调用enqueueMessage方法往消息队列中插入了一条消息,然后不断循环的looper进去取出又交给handler处理,这样就构成了Android的消息机制。
上文源码基于Android8.0,如有纰漏欢迎指出探讨。
网友评论