全面了解Glide缓存

作者: juexingzhe | 来源:发表于2019-08-19 20:42 被阅读22次

    1.综述

    开始之前,关于Glide缓存请先思考几个问题:

    • Glide有几级缓存?
    • Glide内存缓存之间是什么关系?
    • Glide本地文件IO和网络请求是一个线程吗?如果不是,怎么实现线程切换?
    • Glide网络请求回来后数据直接返回给用户还是先存再返回?

    加载开始入口从Engine.load()开始,先看下对这个方法的注释,

    • 会先检查(Active Resources),如果有就直接返回,Active Resources没有被引用的资源会放入Memory Cache,如果Active Resources没有,会往下走
    • 检查Memory Cache中是否有需要的资源,如果有就返回,Memory Cache中没有就继续往下走
    • 检查当前在运行中的job中是否有改资源的下载,有就在现有的job中直接添加callback返回,不重复下载,当然前提是计算得到的key是一致的,如果还是没有,就会构造一个新的job开始新的工作
       * Starts a load for the given arguments.
       *
       * <p>Must be called on the main thread.
       *
       * <p>The flow for any request is as follows:
       * <ul>
       *   <li>Check the current set of actively used resources, return the active resource if
       *   present, and move any newly inactive resources into the memory cache.</li>
       *   <li>Check the memory cache and provide the cached resource if present.</li>
       *   <li>Check the current set of in progress loads and add the cb to the in progress load if
       *   one is present.</li>
       *   <li>Start a new load.</li>
       * </ul>
    

    ok, f the source code

    2.内存缓存

      public <R> LoadStatus load(
          GlideContext glideContext,
          Object model,
          Key signature,
          int width,
          int height,
          Class<?> resourceClass,
          Class<R> transcodeClass,
          Priority priority,
          DiskCacheStrategy diskCacheStrategy,
          Map<Class<?>, Transformation<?>> transformations,
          boolean isTransformationRequired,
          boolean isScaleOnlyOrNoTransform,
          Options options,
          boolean isMemoryCacheable,
          boolean useUnlimitedSourceExecutorPool,
          boolean useAnimationPool,
          boolean onlyRetrieveFromCache,
          ResourceCallback cb) {
        Util.assertMainThread();
        long startTime = VERBOSE_IS_LOGGABLE ? LogTime.getLogTime() : 0;
    
        EngineKey key = keyFactory.buildKey(model, signature, width, height, transformations,
            resourceClass, transcodeClass, options);
    
        // focus 1
        EngineResource<?> active = loadFromActiveResources(key, isMemoryCacheable);
        if (active != null) {
          cb.onResourceReady(active, DataSource.MEMORY_CACHE);
          if (VERBOSE_IS_LOGGABLE) {
            logWithTimeAndKey("Loaded resource from active resources", startTime, key);
          }
          return null;
        }
        // focus 2
        EngineResource<?> cached = loadFromCache(key, isMemoryCacheable);
        if (cached != null) {
          cb.onResourceReady(cached, DataSource.MEMORY_CACHE);
          if (VERBOSE_IS_LOGGABLE) {
            logWithTimeAndKey("Loaded resource from cache", startTime, key);
          }
          return null;
        }
    
        // focus 3
        EngineJob<?> current = jobs.get(key, onlyRetrieveFromCache);
        if (current != null) {
          current.addCallback(cb);
          if (VERBOSE_IS_LOGGABLE) {
            logWithTimeAndKey("Added to existing load", startTime, key);
          }
          return new LoadStatus(cb, current);
        }
    
        EngineJob<R> engineJob =
            engineJobFactory.build(
                key,
                isMemoryCacheable,
                useUnlimitedSourceExecutorPool,
                useAnimationPool,
                onlyRetrieveFromCache);
    
        DecodeJob<R> decodeJob =
            decodeJobFactory.build(
                glideContext,
                model,
                key,
                signature,
                width,
                height,
                resourceClass,
                transcodeClass,
                priority,
                diskCacheStrategy,
                transformations,
                isTransformationRequired,
                isScaleOnlyOrNoTransform,
                onlyRetrieveFromCache,
                options,
                engineJob);
    
        jobs.put(key, engineJob);
    
        engineJob.addCallback(cb);
        // focus 4
        engineJob.start(decodeJob);
    
        if (VERBOSE_IS_LOGGABLE) {
          logWithTimeAndKey("Started new load", startTime, key);
        }
        return new LoadStatus(cb, engineJob);
      }
    

    先看到focus 1,这一步会从ActiveResources中加载资源,首先判断是否使用内存缓存,否的话返回null;否则到ActiveResources中拿:

      // Engine.java
      @Nullable
      private EngineResource<?> loadFromActiveResources(Key key, boolean isMemoryCacheable) {
        if (!isMemoryCacheable) {
          return null;
        }
        EngineResource<?> active = activeResources.get(key);
        if (active != null) {
          active.acquire();
        }
    
        return active;
      }
    

    接下来看下ActiveResources, 其实是用过弱引用保存使用过的资源。

    final class ActiveResources {
    
      ...
      private final Handler mainHandler = new Handler(Looper.getMainLooper(), new Callback() {
        @Override
        public boolean handleMessage(Message msg) {
          if (msg.what == MSG_CLEAN_REF) {
            cleanupActiveReference((ResourceWeakReference) msg.obj);
            return true;
          }
          return false;
        }
      });
      @VisibleForTesting
      final Map<Key, ResourceWeakReference> activeEngineResources = new HashMap<>();
        
      ...
    }
    

    成功拿到数据后回调类型也是内存缓存:

    EngineResource<?> cached = loadFromCache(key, isMemoryCacheable);
    if (cached != null) {
       cb.onResourceReady(cached, DataSource.MEMORY_CACHE);
       return null;
    }
    

    接着回到Engine.load()中继续看到focus 2,如果在cache中找到就是remove掉,然后返回EngineResource,其中需要EngineResource进行acquire一下,这个后面再看,然后会把资源移到ActiveResources中,也就是上面提到的缓存:

    // Engine.java
      private final MemoryCache cache;
    
      private EngineResource<?> loadFromCache(Key key, boolean isMemoryCacheable) {
        if (!isMemoryCacheable) {
          return null;
        }
    
        EngineResource<?> cached = getEngineResourceFromCache(key);
        if (cached != null) {
          cached.acquire();
          activeResources.activate(key, cached);
        }
        return cached;
      }
    
      private EngineResource<?> getEngineResourceFromCache(Key key) {
        Resource<?> cached = cache.remove(key);
    
        final EngineResource<?> result;
        if (cached == null) {
          result = null;
        } else if (cached instanceof EngineResource) {
          // Save an object allocation if we've cached an EngineResource (the typical case).
          result = (EngineResource<?>) cached;
        } else {
          result = new EngineResource<>(cached, true /*isMemoryCacheable*/, true /*isRecyclable*/);
        }
        return result;
      }
    

    其中cacheMemoryCache接口的实现,如果没设置,默认在build的时候是LruResourceCache, 也就是熟悉的LRU Cache:

    // GlideBuilder.java
    if (memoryCache == null) {
       memoryCache = new LruResourceCache(memorySizeCalculator.getMemoryCacheSize());
    }
    

    再看下EngineResource,主要是对资源增加了引用计数的功能:

    // EngineResource.java
    private final boolean isCacheable;
      private final boolean isRecyclable;
      private ResourceListener listener;
      private Key key;
      private int acquired;
      private boolean isRecycled;
      private final Resource<Z> resource;
    
      interface ResourceListener {
        void onResourceReleased(Key key, EngineResource<?> resource);
      }
    
      EngineResource(Resource<Z> toWrap, boolean isCacheable, boolean isRecyclable) {
        resource = Preconditions.checkNotNull(toWrap);
        this.isCacheable = isCacheable;
        this.isRecyclable = isRecyclable;
      }
    
      void setResourceListener(Key key, ResourceListener listener) {
        this.key = key;
        this.listener = listener;
      }
    
      Resource<Z> getResource() {
        return resource;
      }
    
      boolean isCacheable() {
        return isCacheable;
      }
    
      @NonNull
      @Override
      public Class<Z> getResourceClass() {
        return resource.getResourceClass();
      }
    
      @NonNull
      @Override
      public Z get() {
        return resource.get();
      }
    
      @Override
      public int getSize() {
        return resource.getSize();
      }
    
      @Override
      public void recycle() {
        if (acquired > 0) {
          throw new IllegalStateException("Cannot recycle a resource while it is still acquired");
        }
        if (isRecycled) {
          throw new IllegalStateException("Cannot recycle a resource that has already been recycled");
        }
        isRecycled = true;
        if (isRecyclable) {
          resource.recycle();
        }
      }
    
      void acquire() {
        if (isRecycled) {
          throw new IllegalStateException("Cannot acquire a recycled resource");
        }
        if (!Looper.getMainLooper().equals(Looper.myLooper())) {
          throw new IllegalThreadStateException("Must call acquire on the main thread");
        }
        ++acquired;
      }
    
      void release() {
        if (acquired <= 0) {
          throw new IllegalStateException("Cannot release a recycled or not yet acquired resource");
        }
        if (!Looper.getMainLooper().equals(Looper.myLooper())) {
          throw new IllegalThreadStateException("Must call release on the main thread");
        }
        if (--acquired == 0) {
          listener.onResourceReleased(key, this);
        }
      }
    

    release后会判断引用计数是否为0,如果是0就会回调onResourceReleased,在这里就是Engine,然后会把资源从ActiveResources中移除,资源默认是可缓存的,因此会把资源放到LruCache中。

    // Engine.java
      @Override
      public void onResourceReleased(Key cacheKey, EngineResource<?> resource) {
        Util.assertMainThread();
        activeResources.deactivate(cacheKey);
        if (resource.isCacheable()) {
          cache.put(cacheKey, resource);
        } else {
          resourceRecycler.recycle(resource);
        }
      }
    
    // ActiveResources.java
      void activate(Key key, EngineResource<?> resource) {
        ResourceWeakReference toPut =
            new ResourceWeakReference(
                key,
                resource,
                getReferenceQueue(),
                isActiveResourceRetentionAllowed);
    
        ResourceWeakReference removed = activeEngineResources.put(key, toPut);
        if (removed != null) {
          removed.reset();
        }
      }
    
      void deactivate(Key key) {
        ResourceWeakReference removed = activeEngineResources.remove(key);
        if (removed != null) {
          removed.reset();
        }
      }
    
    

    如果是回收呢,看看上面的EngineResource,如果引用计数为0并且还没与回收,就会调用真正的Resource.recycle(),看其中的一个BitmapResource是怎么回收的,就是放到Bitmap池中,也是用的LRU Cache,这个和今天的主题不相关,就不继续往下拓展。

      // BitmapResource.java
      @Override
      public void recycle() {
        bitmapPool.put(bitmap);
      }
    

    思路再拉到Engine.load()的流程中,接下来该看focus 3,这里再贴一下代码,如果job已经在运行了,那么直接添加一个回调后返回LoadStatus,这个可以允许用户取消任务:

    // Engine.java
    EngineJob<?> current = jobs.get(key, onlyRetrieveFromCache);
    if (current != null) {
       current.addCallback(cb);
       if (VERBOSE_IS_LOGGABLE) {
          logWithTimeAndKey("Added to existing load", startTime, key);
        }
       return new LoadStatus(cb, current);
    }
    
    // LoadStatus
      public static class LoadStatus {
        private final EngineJob<?> engineJob;
        private final ResourceCallback cb;
    
        LoadStatus(ResourceCallback cb, EngineJob<?> engineJob) {
          this.cb = cb;
          this.engineJob = engineJob;
        }
    
        public void cancel() {
          engineJob.removeCallback(cb);
        }
      }
    

    接着往下看到focus 4, 到这里就需要创建后台任务去拉取磁盘文件或者发起网络请求

    3.磁盘缓存

       // Engine.java
       EngineJob<R> engineJob =
            engineJobFactory.build(
                key,
                isMemoryCacheable,
                useUnlimitedSourceExecutorPool,
                useAnimationPool,
                onlyRetrieveFromCache);
    
        DecodeJob<R> decodeJob =
            decodeJobFactory.build(
                glideContext,
                model,
                key,
                signature,
                width,
                height,
                resourceClass,
                transcodeClass,
                priority,
                diskCacheStrategy,
                transformations,
                isTransformationRequired,
                isScaleOnlyOrNoTransform,
                onlyRetrieveFromCache,
                options,
                engineJob);
    
        jobs.put(key, engineJob);
    
        engineJob.addCallback(cb);
        engineJob.start(decodeJob);
        return new LoadStatus(cb, engineJob);
    

    先构造两个job,一个是EngineJob,另外一个DecodeJob,其中DecodeJob会根据需要解码的资源来源分成下面几个阶段:

    // DecodeJob.java
      /**
       * Where we're trying to decode data from.
       */
      private enum Stage {
        /** The initial stage. */
        INITIALIZE,
        /** Decode from a cached resource. */
        RESOURCE_CACHE,
        /** Decode from cached source data. */
        DATA_CACHE,
        /** Decode from retrieved source. */
        SOURCE,
        /** Encoding transformed resources after a successful load. */
        ENCODE,
        /** No more viable stages. */
        FINISHED,
      }
    

    在构造DecodeJob时会把状态置为INITIALIZE

    构造完两个Job后会调用EngineJob.start(DecodeJob),首先会调用getNextStage来确定下一个阶段,这里面跟DiskCacheStrategy这个传入的磁盘缓存策略有关。

    磁盘策略有下面几种:

    ALL: 缓存原始数据和转换后的数据
    NONE: 不缓存
    DATA: 原始数据,未经过解码或者转换
    RESOURCE: 缓存经过解码的数据
    AUTOMATIC(默认):根据`EncodeStrategy`和`DataSource`等条件自动选择合适的缓存方式
    

    默认的AUTOMATIC方式是允许解码缓存的RESOURCE

    public static final DiskCacheStrategy AUTOMATIC = new DiskCacheStrategy() {
        @Override
        public boolean isDataCacheable(DataSource dataSource) {
          return dataSource == DataSource.REMOTE;
        }
    
        @Override
        public boolean isResourceCacheable(boolean isFromAlternateCacheKey, DataSource dataSource,
            EncodeStrategy encodeStrategy) {
          return ((isFromAlternateCacheKey && dataSource == DataSource.DATA_DISK_CACHE)
              || dataSource == DataSource.LOCAL)
              && encodeStrategy == EncodeStrategy.TRANSFORMED;
        }
    
        @Override
        public boolean decodeCachedResource() {
          return true;
        }
    
        @Override
        public boolean decodeCachedData() {
          return true;
        }
      };
    

    所以在getNextStage会先返回Stage.RESOURCE_CACHE,然后在start中会返回diskCacheExecutor,然后开始执行DecodeJob:

    // EngineJob.java
    public void start(DecodeJob<R> decodeJob) {
        this.decodeJob = decodeJob;
        GlideExecutor executor = decodeJob.willDecodeFromCache()
            ? diskCacheExecutor
            : getActiveSourceExecutor();
        executor.execute(decodeJob);
    }
    
    // DecodeJob.java
      boolean willDecodeFromCache() {
        Stage firstStage = getNextStage(Stage.INITIALIZE);
        return firstStage == Stage.RESOURCE_CACHE || firstStage == Stage.DATA_CACHE;
      }
    
      private Stage getNextStage(Stage current) {
        switch (current) {
          case INITIALIZE:
            return diskCacheStrategy.decodeCachedResource()
                ? Stage.RESOURCE_CACHE : getNextStage(Stage.RESOURCE_CACHE);
          case RESOURCE_CACHE:
            return diskCacheStrategy.decodeCachedData()
                ? Stage.DATA_CACHE : getNextStage(Stage.DATA_CACHE);
          case DATA_CACHE:
            // Skip loading from source if the user opted to only retrieve the resource from cache.
            return onlyRetrieveFromCache ? Stage.FINISHED : Stage.SOURCE;
          case SOURCE:
          case FINISHED:
            return Stage.FINISHED;
          default:
            throw new IllegalArgumentException("Unrecognized stage: " + current);
        }
      }
    

    DecodeJob会回调run()开始执行, run()中调用runWrapped执行工作,这里runReason还是RunReason.INITIALIZE ,根据前面的分析指导这里会获得一个ResourceCacheGenerator,然后调用runGenerators

    // DecodeJob.java  
    private void runWrapped() {
        switch (runReason) {
          case INITIALIZE:
            stage = getNextStage(Stage.INITIALIZE);
            currentGenerator = getNextGenerator();
            runGenerators();
            break;
          case SWITCH_TO_SOURCE_SERVICE:
            runGenerators();
            break;
          case DECODE_DATA:
            decodeFromRetrievedData();
            break;
          default:
            throw new IllegalStateException("Unrecognized run reason: " + runReason);
        }
      }
    
      private DataFetcherGenerator getNextGenerator() {
        switch (stage) {
          case RESOURCE_CACHE:
            return new ResourceCacheGenerator(decodeHelper, this);
          case DATA_CACHE:
            return new DataCacheGenerator(decodeHelper, this);
          case SOURCE:
            return new SourceGenerator(decodeHelper, this);
          case FINISHED:
            return null;
          default:
            throw new IllegalStateException("Unrecognized stage: " + stage);
        }
      }
    
    

    runGenerators中,会调用startNext,目前currentGeneratorResourceCacheGenerator, 那么就是调用它的startNext方法:

    // DecodeJob.java  
    private void runGenerators() {
        currentThread = Thread.currentThread();
        startFetchTime = LogTime.getLogTime();
        boolean isStarted = false;
        while (!isCancelled && currentGenerator != null
            && !(isStarted = currentGenerator.startNext())) {
          stage = getNextStage(stage);
          currentGenerator = getNextGenerator();
    
          if (stage == Stage.SOURCE) {
            reschedule();
            return;
          }
        }
        // We've run out of stages and generators, give up.
        if ((stage == Stage.FINISHED || isCancelled) && !isStarted) {
          notifyFailed();
        }
      }
    

    看下ResourceCacheGenerator.startNext(), 这里面就是重点逻辑了,首先从Registry中获取支持资源类型的ModelLoader(其中ModelLoader是在构造Glide的时候传进去), 然后从ModelLoader中构造LoadData,接着就能拿到DataFetcher,(关于ModelLoader/LoadData/DataFetcher之间的关系不在本次范围内,后面有机会再另写)通过它的loadData方法加载数据:

      @Override
      public boolean startNext() {
        List<Key> sourceIds = helper.getCacheKeys();
        if (sourceIds.isEmpty()) {
          return false;
        }
        List<Class<?>> resourceClasses = helper.getRegisteredResourceClasses();
        if (resourceClasses.isEmpty()) {
          if (File.class.equals(helper.getTranscodeClass())) {
            return false;
          }
        }
        while (modelLoaders == null || !hasNextModelLoader()) {
          resourceClassIndex++;
          if (resourceClassIndex >= resourceClasses.size()) {
            sourceIdIndex++;
            if (sourceIdIndex >= sourceIds.size()) {
              return false;
            }
            resourceClassIndex = 0;
          }
    
          Key sourceId = sourceIds.get(sourceIdIndex);
          Class<?> resourceClass = resourceClasses.get(resourceClassIndex);
          Transformation<?> transformation = helper.getTransformation(resourceClass);
          currentKey =
              new ResourceCacheKey(// NOPMD AvoidInstantiatingObjectsInLoops
                  helper.getArrayPool(),
                  sourceId,
                  helper.getSignature(),
                  helper.getWidth(),
                  helper.getHeight(),
                  transformation,
                  resourceClass,
                  helper.getOptions());
          cacheFile = helper.getDiskCache().get(currentKey);
          if (cacheFile != null) {
            sourceKey = sourceId;
            modelLoaders = helper.getModelLoaders(cacheFile);
            modelLoaderIndex = 0;
          }
        }
    
        loadData = null;
        boolean started = false;
        while (!started && hasNextModelLoader()) {
          ModelLoader<File, ?> modelLoader = modelLoaders.get(modelLoaderIndex++);
          loadData = modelLoader.buildLoadData(cacheFile,
              helper.getWidth(), helper.getHeight(), helper.getOptions());
          if (loadData != null && helper.hasLoadPath(loadData.fetcher.getDataClass())) {
            started = true;
            loadData.fetcher.loadData(helper.getPriority(), this);
          }
        }
    
        return started;
      }
    

    如果在Resource中找不到需要的资源,那么startNext就会返回false,在runGenerators中就会进入循环体内:

    • 接着会重复上面执行getNextStage,由于现在Stage已经是RESOURCE_CACHE,所以接下来会返回DataCacheGenerator,执行逻辑和上面的ResourceCacheGenerator是一样的,如果还是没有找到需要的,进入循环体内
    • 此时getNextStage会根据用于是否设置只从磁盘中获取资源,如果是就会通知失败,回调onLoadFailed;如果不是就设置当前StageStage.SOURCE,接着往下走
    • 状态就会进入循环内部的if条件逻辑里面,调用reschedule
    • reschedulerunReason设置成SWITCH_TO_SOURCE_SERVICE,然后通过callback回调
    • DecodeJob中的callbackEngineJob传递过来的,所以现在返回到EngineJob
    • EngineJob中通过getActiveSourceExecutor切换到网络线程池中,执行DecodeJob,下面就准备开始发起网络请求

    4.网络缓存

    • Stage.SOURCE阶段,通过getNextGenerator返回的是SourceGenerator,所以目前的currentGenerator就是它
    • 流程还是一样的,SourceGenerator还是调用startNext方法,获取到对应的DataFetcher,这里其实是HttpUrlFetcher,发起网络请求
    // DecodeJob.java  
    private void runGenerators() {
       ...
        while (!isCancelled && currentGenerator != null
            && !(isStarted = currentGenerator.startNext())) {
          stage = getNextStage(stage);
          currentGenerator = getNextGenerator();
    
          if (stage == Stage.SOURCE) {
            reschedule();
            return;
          }
        }
       ...
      }
    
      @Override
      public void reschedule() {
        runReason = RunReason.SWITCH_TO_SOURCE_SERVICE;
        callback.reschedule(this);
      }
    
    // EngineJob.java
      @Override
      public void reschedule(DecodeJob<?> job) {
        getActiveSourceExecutor().execute(job);
      }
    

    先缓一缓,本文其实到了上面已经可以结束了,Glide涉及到的五级缓存都已经涉及到了,是真的就可以结束了吗?不是的,网络请求回来和缓存还有关系吗?接着看到HttpUrlFetcher,下载成功后回调onDataReady,其中callbackSourceGenerator:

    // HttpUrlFetcher.java
    @Override
      public void loadData(@NonNull Priority priority,
          @NonNull DataCallback<? super InputStream> callback) {
        long startTime = LogTime.getLogTime();
        try {
          InputStream result = loadDataWithRedirects(glideUrl.toURL(), 0, null, glideUrl.getHeaders());
          callback.onDataReady(result);
        } catch (IOException e) {
          if (Log.isLoggable(TAG, Log.DEBUG)) {
            Log.d(TAG, "Failed to load data for url", e);
          }
          callback.onLoadFailed(e);
        } finally {
          if (Log.isLoggable(TAG, Log.VERBOSE)) {
            Log.v(TAG, "Finished http url fetcher fetch in " + LogTime.getElapsedMillis(startTime));
          }
        }
      }
    
    // EngineJob.java
      @Override
      public void reschedule(DecodeJob<?> job) {
        getActiveSourceExecutor().execute(job);
      }
    
    • 正常情况会进入if判断逻辑里面,赋值dataToCache,然后回调cb.reschedule,而cb就是DecodeJob构造SourceGenerator的时候传入,cbDecodeJob
    // SourceGenerator.java
      @Override
      public void onDataReady(Object data) {
        DiskCacheStrategy diskCacheStrategy = helper.getDiskCacheStrategy();
        if (data != null && diskCacheStrategy.isDataCacheable(loadData.fetcher.getDataSource())) {
          dataToCache = data;
          cb.reschedule();
        } else {
          cb.onDataFetcherReady(loadData.sourceKey, data, loadData.fetcher,
              loadData.fetcher.getDataSource(), originalKey);
        }
      }
    
    • DecodeJobreschedule回调EngineJob,最后还是回到SourceGenerator中的startNext()逻辑
    // DecodeJob.java
      private DataFetcherGenerator getNextGenerator() {
        switch (stage) {
          case RESOURCE_CACHE:
            return new ResourceCacheGenerator(decodeHelper, this);
          case DATA_CACHE:
            return new DataCacheGenerator(decodeHelper, this);
          case SOURCE:
            return new SourceGenerator(decodeHelper, this);
          case FINISHED:
            return null;
          default:
            throw new IllegalStateException("Unrecognized stage: " + stage);
        }
      }
    
      @Override
      public void reschedule() {
        runReason = RunReason.SWITCH_TO_SOURCE_SERVICE;
        callback.reschedule(this);
      }
    
    • 和第一次进来的逻辑不一样,现在dataToCache != null,进入第一个if逻辑
    • 在逻辑里面调用cacheData,逻辑很明显,保持数据到本地,然后会构造一个DataCacheGenerator
    • DataCacheGenerator前面已经分析过了,就是用来加载本地原始数据的,这回会加载成功,返回true
    // SourceGenerator.java
    @Override
      public boolean startNext() {
        if (dataToCache != null) {
          Object data = dataToCache;
          dataToCache = null;
          cacheData(data);
        }
        
        if (sourceCacheGenerator != null && sourceCacheGenerator.startNext()) {
          return true;
        }
        ...
      }
    
      private void cacheData(Object dataToCache) {
        long startTime = LogTime.getLogTime();
        try {
          Encoder<Object> encoder = helper.getSourceEncoder(dataToCache);
          DataCacheWriter<Object> writer =
              new DataCacheWriter<>(encoder, dataToCache, helper.getOptions());
          originalKey = new DataCacheKey(loadData.sourceKey, helper.getSignature());
          helper.getDiskCache().put(originalKey, writer);
        } finally {
          loadData.fetcher.cleanup();
        }
    
        sourceCacheGenerator =
            new DataCacheGenerator(Collections.singletonList(loadData.sourceKey), helper, this);
      }
    

    接下来就是一系列的回调了:

    • DataCacheGeneratorstartNext逻辑里面会给DataFetcher传递自身作为callback,在加载本地数据成功后回调onDataReady
    // DataCacheGenerator
      @Override
      public boolean startNext() {
        ...
    
        loadData = null;
        boolean started = false;
        while (!started && hasNextModelLoader()) {
          ...
          if (loadData != null && helper.hasLoadPath(loadData.fetcher.getDataClass())) {
            started = true;
            loadData.fetcher.loadData(helper.getPriority(), this);
          }
        }
        return started;
      }
    
      @Override
      public void onDataReady(Object data) {
        cb.onDataFetcherReady(sourceKey, data, loadData.fetcher, DataSource.DATA_DISK_CACHE, sourceKey);
      }
    
    • cb现在是SourceGenerator传递过来,SourceGenerator再回调它自己的cb,是DecodeJob在构造它的时候传过来
    // SourceGenerator.java
      @Override
      public void onDataFetcherReady(Key sourceKey, Object data, DataFetcher<?> fetcher,
          DataSource dataSource, Key attemptedKey) {
        cb.onDataFetcherReady(sourceKey, data, fetcher, loadData.fetcher.getDataSource(), sourceKey);
      }
    
    // DecodeJob.java
      @Override
      public void onDataFetcherReady(Key sourceKey, Object data, DataFetcher<?> fetcher,
          DataSource dataSource, Key attemptedKey) {
        this.currentSourceKey = sourceKey;
        this.currentData = data;
        this.currentFetcher = fetcher;
        this.currentDataSource = dataSource;
        this.currentAttemptingKey = attemptedKey;
        if (Thread.currentThread() != currentThread) {
          runReason = RunReason.DECODE_DATA;
          callback.reschedule(this);
        } else {
          try {
            decodeFromRetrievedData();
          } finally {
            GlideTrace.endSection();
          }
        }
      }
    
    • 在上面SourceGeneratorDecodeJob切换到ActiveSourceExecutor线程中执行,还记得一开始DecodeJob是在哪启动的吗?在EngineJob中启动,然后是把DecodeJob放到diskCacheExecutor中执行
    // EngineJob.java
      public void start(DecodeJob<R> decodeJob) {
        this.decodeJob = decodeJob;
        GlideExecutor executor = decodeJob.willDecodeFromCache()
            ? diskCacheExecutor
            : getActiveSourceExecutor();
        executor.execute(decodeJob);
      }
    
    • 所以上面在DecodeJobonDataFetcherReady会走到第一个if逻辑里面,然后赋值runReason = RunReason.DECODE_DATA,再一次回调Engine.reschedule,将工作线程切换到ActiveSourceExecutor
    // Engine.java
      @Override
      public void reschedule(DecodeJob<?> job) {
        // Even if the job is cancelled here, it still needs to be scheduled so that it can clean itself
        // up.
        getActiveSourceExecutor().execute(job);
      }
    
    // 
    
    • 然后还是走到DecodeJob, 现在会进入DECODE_DATA分支,在这里面会调用ResourceDecoder把数据解码:
      private void runWrapped() {
        switch (runReason) {
          case INITIALIZE:
            stage = getNextStage(Stage.INITIALIZE);
            currentGenerator = getNextGenerator();
            runGenerators();
            break;
          case SWITCH_TO_SOURCE_SERVICE:
            runGenerators();
            break;
          case DECODE_DATA:
            decodeFromRetrievedData();
            break;
          default:
            throw new IllegalStateException("Unrecognized run reason: " + runReason);
        }
      }
    
    • 解码成功后调用notifyComplete(result, dataSource);
      private void notifyComplete(Resource<R> resource, DataSource dataSource) {
        setNotifiedOrThrow();
        callback.onResourceReady(resource, dataSource);
      }
    

    5.总结

    现在回答一下开头的几个问题。

    1. 有几级缓存?五级,分别是
    • 活动资源 (Active Resources)
    • 内存缓存 (Memory Cache)
    • 资源类型(Resource Disk Cache)
    • 原始数据 (Data Disk Cache)
    • 网络缓存
    1. Glide内存缓存之间是什么关系?专门画了一幅图表明这个关系,言简意赅
    image
    1. Glide本地文件IO和网络请求是一个线程吗?明显不是,本地IO通过diskCacheExecutor,而网络IO通过ActiveSourceExecutor

    2. Glide网络请求回来后数据直接返回给用户还是先存再返回?不是直接返回给用户,会在SourceGenerator中构造一个DataCacheGenerator来取数据

    相关文章

      网友评论

        本文标题:全面了解Glide缓存

        本文链接:https://www.haomeiwen.com/subject/nftysctx.html