上个世纪 50 年代,计算机在西洋跳棋(checkers)上击败了人类,还可以解决代数题,在世间引起了巨大轰动。60 年代时,人们充满信心地认为科学家很快就可以通过硬件和软件用计算机模拟人脑,而且这种“人工智能”很快就能在任何任务上与人类匹敌。1967 年,麻省理工学院的马文·明斯基(Marvin Minsky)甚至宣称,人工智能问题将在一代人的时间内被彻底解决。
现在来看,人们当时的乐观情绪显然过于幼稚了。尽管软件工程师已经设计出了旨在帮助医生更好诊断疾病的软件,开发了用于识别图片内容的模仿人脑的网络模型,但是效果均不理想。早期的这些算法不够复杂,而且依赖的海量数据也是当时无法提供的。另一方面,人类智能十分复杂,要想近似地模拟人脑功能需要巨大的计算量,可当时的计算机实在太慢,无法胜任。
到 2005 年前后,科学界几乎已经没人还看好机器可以达到人类的智能水平。在那个时候,“人工智能”似乎都已经变成了科幻的代名词。科学家和作家们往往将 20 世纪 70 年代到 2005 年前后的这段时间称为“人工智能的冬天”——梦想幻灭的日子。
10 年之后,一切都不一样了。从 2005 年开始,人工智能的形式出现了巨大变革。这一切源于“深度学习”(deep learning)技术的出现,这一方法原本指的是从脑科学中汲取灵感以制造智能机器,但后来已经自成体系。近年来,深度学习已经成为了驱动人工智能领域发展的最主要力量,各大信息技术公司在这方面共掷下了数十亿美元的资金。
深度学习已经在语音识别、图像识别等领域取得突破。深度学习全称深度神经网络,本质上是多层次的人工神经网络算法,即从结构上模拟人脑的运行机制,从基本的单元上模拟了人类大脑的运行机制。深度学习已经开始在计算机视觉、语音识别、自然语言理解等领域取得了突破。
在语音识别领域,2010 年,使用深度神经网络模型的语音识别相对传统混合高斯模型识别错误率降低超过 20%,目前所有的商用语音识别算法都基于深度学习。在图像分类领域,目前针对ImageNet 数据集的算法分类精度已经达到了 95%以上,可以与人的分辨能力相当。深度学习在人脸识别、通用物体检测、图像语义分割、自然语言理解等领域也取得了突破性的进展。
海量的数据和高效的算力支撑是深度学习算法实现的基础。深度学习分为训练(training)和推断(inference)两个环节。训练需要海量数据输入,训练出一个复杂的深度神经网络模型。
推断指利用训练好的模型,使用待判断的数据去“推断”得出各种结论。大数据时代的到来,图形处理器(Graphics Processing Unit,GPU)等各种更加强大的计算设备的发展,使得深度学习可以充分利用海量数据(标注数据、弱标注数据或无标注数据),自动地学习到抽象的知识表达,即把原始数据浓缩成某种知识。(部分内容来源于网络如有侵权请联系删除)
欢迎您分享文章,让更多有需要的人看到。
网友评论