探究至暗之秘,黑洞的前世今生

作者: JohnMarti | 来源:发表于2020-10-19 22:53 被阅读0次

2020诺贝尔物理学奖三位得主分享了今年的诺贝尔物理学奖,以表彰他们对宇宙中最奇异的现象之一——黑洞的发现。

罗杰·彭罗斯证明了黑洞是广义相对论的直接结果。莱因哈德·根泽尔和安德里亚·盖兹发现,银河系中心的恒星轨道被一个看不见的质量极大的物体控制。超大质量黑洞是目前已知的唯一解释。

罗杰·彭罗斯发明了精妙的数学方法来探索阿尔伯特·爱因斯坦的广义相对论。他证明了广义相对论将导致黑洞的形成。黑洞是时空中的怪兽,可以捕捉进入它们的一切。任何东西,即使是光,也无法逃脱。

莱因哈德·根泽尔和安德里亚·盖兹各自领导着一个天文学家小组,他们自20世纪90年代初以来一直专注于银河系中心一个名为人马座A*的区域。随着精度的提高,他们绘制了距离银河系中心最近最亮的群星的轨道。这两个小组都发现了一个质量极大的不可见的天体,它吸引着一群运动方向不同的恒星,使得它们以极快的速度绕转。这个看不见的物体大约有400万个太阳质量,挤在一个不比我们太阳系大的区域内。是什么让银河系中心的恒星以如此惊人的速度旋转?根据目前的引力理论,只有一个候选者——超大质量黑洞。

即使是广义相对论之父——爱因斯坦也不认为黑洞真的存在。然而,在爱因斯坦去世十年后,英国理论家罗杰·彭罗斯证明了黑洞可以形成,并描述了黑洞的性质。在黑洞的核心,隐藏着一个奇点(singularity),这是理论的边界,在此所有已知的自然法则都将失效。

为了证明黑洞的形成是一个稳定的过程,彭罗斯需要拓展用于研究相对论的方法——用新的数学概念来解决该理论中的问题。彭罗斯的开创性文章发表于1965年1月,至今仍被认为是自爱因斯坦以来对广义相对论的最重要贡献。

黑洞可能是广义相对论最神奇的结果。当爱因斯坦在1915年11月提出他的理论时,它颠覆了之前所有的空间和时间概念。该理论为理解引力提供了一个全新的基础,而引力在最大尺度上塑造了宇宙。从那时起,这一理论为所有的宇宙研究提供了基础,并在我们常见的导航工具GPS中得到了实际应用。

爱因斯坦的理论描述了宇宙中的一切事物和每个人是如何被引力掌控的。重力把我们留在地球上,引力控制着行星围绕太阳的轨道以及太阳围绕银河系中心的轨道。它使得恒星从星际云中诞生,并最终在引力坍缩中消亡。引力塑造空间的形状,影响时间的流逝。大质量物体会使空间弯曲,使时间变慢;极大质量的聚集甚至会切断并封闭一块空间——形成黑洞。

对我们现在所说的“黑洞”的第一次理论描述出现在广义相对论发表数周以后。尽管广义相对论的场方程有极其复杂的数学形式,但德国天体物理学家卡尔·施瓦西仍为爱因斯坦提供了一个描述质量如何使时空弯曲的解。

后来的研究表明,一旦黑洞形成,它就被事件视界所包围,事件视界像面罩一样遮盖了位于黑洞中心的质量。黑洞永远隐藏在它的视界之内。质量越大,黑洞及其视界就越大。对于与太阳相当的质量,事件视界的半径约为3公里,而对于像地球这样的质量,其半径只有约9毫米。

“黑洞”的概念在许多文化层面中拥有了新的含义,但对于物理学家而言,黑洞是巨型恒星演化的自然终点。20世纪30年代末,物理学家罗伯特·奥本海默首次完成了一颗大质量恒星的剧烈坍缩进行的计算,他后来领导了制造第一枚原子弹的曼哈顿计划。当比太阳重许多倍的巨星耗尽燃料时,会导致超新星爆发,随后坍塌成极其致密的遗骸,它们如此之重以至于其引力将吞噬一切周围事物,甚至是光。

早在18世纪末,英国哲学家和数学家约翰·米歇尔和法国著名科学家皮埃尔·西蒙·德·拉普拉斯(Pierre Simon de Laplace)的著作中就提及“暗星”的概念。两人都认为,天体可能会变得十分致密,以至于它们将是不可见的——即使是光速也不足以摆脱它们的引力。

1963年,随着宇宙中最明亮的天体——类星体的发现,黑洞存在的问题再次浮现。在之后的十年里,天文学家一直为来自神秘源的射电信号感到困惑,如室女座的3C273。可见光辐射最终揭示了它的真实位置——3C273十分遥远以至于其光线传播超过10亿年才到达地球。

若此光源距离如此远,那么它的强度必须相当于几百个星系的光。它被命名为“类星体”。天文学家很快发现类星体是如此遥远,它们在宇宙的早期就已发出了辐射。这些难以置信的辐射从何而来?只有一种方法可以在类星体的有限体积内获得如此大量能量——物质落入大质量黑洞。

// 俘获面解开谜团

黑洞能否在实际条件下形成是一个令罗杰·彭罗斯困惑的问题。据他后来的回忆,答案出现在1964年秋天,当时他和一位同事在伦敦散步,彼时彭罗斯是伯克贝克学院的数学教授。当他们停止交谈准备穿过一条小巷时,一个想法闪现在他的脑海里。那天下午的晚些时候,他在记忆中寻找那一闪的灵光。这个他称之为“俘获面(trapped surface)”的想法是他一直在不知不觉中寻找的关键,是描述黑洞所需的一种关键数学工具。

无论曲面是向外还是向内弯曲,俘获面都会迫使所有光线指向一个中心。彭罗斯利用俘获面证明了黑洞中总是隐藏着一个奇点,一个时间和空间结束的边界。奇点的密度无限大,迄今为止,还没有理论能够走进这一物理学中最奇异的现象。

在彭罗斯对奇点定理的证明过程中,俘获面成为了一个中心概念。他引入的拓扑学方法对于研究弯曲宇宙而言是极其有用的。

一个多世纪后,阿尔伯特·爱因斯坦发表了他的广义相对论,该理论中以困难著称的方程的某些解就描述了这样的暗星。直到20世纪60年代,这些解还被认为是纯粹的理论推测,描述的是恒星及其黑洞的完美球形和对称的理想情况。但宇宙中没有什么是完美的,罗杰·彭罗斯是第一个成功地为所有坍缩物质找到现实的解的人,不同于完美的球形和理想的对称结构,这些物质可以有凹痕、波纹和自然的缺陷。

罗杰·彭罗斯证明了黑洞是广义相对论的直接结果,但是在奇点无限强大的引力下,广义相对论也不再适用。理论物理领域正进行着大量地工作,以期创造新的量子引力理论。它将使相对论和量子力学这两大物理学支柱结合起来,两者将在黑洞的最内部相遇。

与此同时,人类的观测也越来越接近黑洞。莱因哈德·根泽尔和安德里亚·盖兹的开创性工作引领了对广义相对论及其最神奇预测的新一代精确测试。极有可能的是,这些测量也能够为新的理论提供线索。宇宙还有许多秘密和惊喜有待发现。

相关文章

  • 探究至暗之秘,黑洞的前世今生

    2020诺贝尔物理学奖三位得主分享了今年的诺贝尔物理学奖,以表彰他们对宇宙中最奇异的现象之一——黑洞的发现。 罗杰...

  • 2021-12-26

    匆匆人世,遇之不易; 情愫暗生,留之刻骨。 前世之蛊,奈何难除; 今生之缘,红绳相牵。

  • 前世今生

    佛说因果,今生果报是由前世之因。 人们常想是否有前世。我觉得前世是有的,昨天便是前世,今天便是今生。昨日所中之因,...

  • 历史馆 | 整形的鼻祖竟不是韩国!盘点古代的整形秘术

    历史馆 |整形的鼻祖竟不是韩国!盘点古代的整形秘术 ——《化妆品的前世今生》系列17 关于古代之美,美在妆容的淡妆...

  • 伴浮生

    不念前世,不待来生 有谁在细语今生 不念前世,不待来生 有谁在相思今生 长情伴浮生 得之我之幸

  • Unity C#基础之 多线程的前世今生(下) 扩展篇

    在前面两篇Unity C#基础之 多线程的前世今生(上) 科普篇和Unity C#基础之 多线程的前世今生(中) ...

  • 塔罗前世今生|H君,前世篇

    这里是与鹿的塔罗秘境。你敢不敢来场灵魂冒险。 好友H,乃好汉一条,日前来抽了个前世今生牌阵。前世今生牌阵的创作者已...

  • 前世今生之A

    不会取名字…A和B是男的,C是女的 前世1 A爱了B一辈子追了B一辈子对B好了一辈子。到头来,伤透了朋友家人的心,...

  • 前世今生之A

    前世2 A其实一点也不淡然,他也一点也不想离开。 他不能回国,因为B的事,他倾尽全力保护保住公司,保住员工们的生活...

  • 悲伤的轮回

    曾经的我有百万种差别 但有一点 却是一致的 前世之我一如今生之我 今生之我一如来世之我 都是爱你的 只不过 前世之...

网友评论

    本文标题:探究至暗之秘,黑洞的前世今生

    本文链接:https://www.haomeiwen.com/subject/nlxrmktx.html